The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201008 Triangular numbers, T(m), that are five-sixths of another triangular number: T(m) such that 6*T(m)=5*T(k) for some k. 6
0, 55, 26565, 12804330, 6171660550, 2974727580825, 1433812522297155, 691094661019647940, 333106192798948009980, 160556493834431921162475, 77387896922003387052303025, 37300805759911798127288895630 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
For n > 1, a(n) = 482*a(n-1) - a (n-2) + 55. See A200993 for generalization.
From Bruno Berselli, Dec 21 2011: (Start)
G.f.: 55*x/((1-x)*(1-482*x+x^2)).
a(n) = a(-n-1) = 483*a(n-1)-483*a(n-2)+a(n-3).
a(n) = ((11-2r))^(2n+1)+(11+2r)^(2n+1)-22)/192, where r=sqrt(30). (End)
EXAMPLE
6*0 = 5*0;
6*55 = 5*66;
6*26565 = 5*31878;
6*12804330 = 5*15365196.
MATHEMATICA
LinearRecurrence[{483, -483, 1}, {0, 55, 26565}, 30] (* Vincenzo Librandi, Dec 22 2011 *)
PROG
(Maxima) makelist(expand(((11-2*sqrt(30))^(2*n+1)+(11+2*sqrt(30))^(2*n+1)-22)/192), n, 0, 11); \* Bruno Berselli, Dec 21 2011 *\
(Magma) I:=[0, 55, 26565]; [n le 3 select I[n] else 483*Self(n-1)-483*Self(n-2)+Self(n-3): n in [1..15]]; // Vincenzo Librandi, Dec 22 2011
(PARI) concat(0, Vec(55/(1-x)/(1-482*x+x^2)+O(x^98))) \\ Charles R Greathouse IV, Dec 23 2011
CROSSREFS
Sequence in context: A163036 A358785 A033512 * A172722 A221000 A196428
KEYWORD
nonn,easy
AUTHOR
Charlie Marion, Dec 20 2011
EXTENSIONS
a(11) corrected by Bruno Berselli, Dec 21 2011
a(6) corrected by Vincenzo Librandi, Dec 22 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 23:38 EDT 2024. Contains 373468 sequences. (Running on oeis4.)