OFFSET
0,2
COMMENTS
a(n-1) = number of Fibonacci numbers F(k), k <= 10^n, which end in 0. a(1)=6 because there are 6 Fibonacci numbers up to 10^2 which end in 0. - Shyam Sunder Gupta and Benoit Cloitre, Aug 15 2002
a(n) is the total number of holes in a certain triangle fractal (start with 10 triangles, 6 holes) after n iterations. See illustration in links. - Kival Ngaokrajang, Feb 21 2015
LINKS
Ivan Panchenko, Table of n, a(n) for n = 0..200
Kival Ngaokrajang, Illustration of initial terms
Index entries for linear recurrences with constant coefficients, signature (11,-10).
FORMULA
a(n) = 6*A002275(n).
From Jaume Oliver Lafont, Feb 03 2009: (Start)
G.f.: 6*x/((1-x)*(1-10*x)).
a(n) = 11*a(n-1) - 10*a(n-2) with a(0)=0, a(1)=6. (End)
a(n) = a(n-1) + 6*10^(n-1) with a(0)=0. - Vincenzo Librandi, Jul 22 2010
E.g.f.: 2*exp(x)*(exp(9*x) - 1)/3. - Stefano Spezia, Sep 13 2023
MATHEMATICA
LinearRecurrence[{11, -10}, {0, 6}, 20] (* Harvey P. Dale, Dec 20 2012 *)
PROG
(PARI) a(n)=6*(10^n-1)/9 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved