Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Sep 16 2019 10:55:56
%S 21,2211,222111,22221111,2222211111,222222111111,22222221111111,
%T 2222222211111111,222222222111111111,22222222221111111111,
%U 2222222222211111111111,222222222222111111111111,22222222222221111111111111,2222222222222211111111111111,222222222222222111111111111111,22222222222222221111111111111111
%N Triangular numbers of the form 2..21..1; n_times 2 followed with n_times 1; n >= 1.
%C Triangular numbers of the form (5^(2x)*2^(2x+1)-10^x-1)/9. - _Harvey P. Dale_, Sep 16 2019
%H Colin Barker, <a href="/A319170/b319170.txt">Table of n, a(n) for n = 1..500</a>
%H Jiri Sedlacek, <a href="https://dml.cz/bitstream/handle/10338.dmlcz/403521/SkolaMladychMatematiku_010-1964-1_9.pdf">Trojuhelnikova cisla</a>, In: Jiří Sedláček (author): Faktoriály a kombinační čísla. (Czech). Praha: Mladá fronta, 1964. pp. 60-71.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (111,-1110,1000).
%F For n >= 1, a(n) = 2..21..1; n_times 2 followed with n_times 1.
%F a(n) = A000217(n_times 6), that is a(n) = A000217(A002280(n)).
%F a(n) = 1/9 * (2*10^n + 1) * (10^n - 1), that is a(n) = 1/9 * A199682(n) * A002283(n).
%F From _Colin Barker_, Sep 13 2018: (Start)
%F G.f.: 3*x*(7 - 40*x) / ((1 - x)*(1 - 10*x)*(1 - 100*x)).
%F a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>3
%F (End)
%e a(1) = A000217(6) = 21; a(2) = A000217(66) = 2211; a(3) = A000217(666) = 222111.
%t Select[Table[FromDigits[Join[PadRight[{},n,2],PadRight[{},n,1]]],{n,20}], OddQ[ Sqrt[8#+1]]&] (& or *) Select[Table[(5^(2x) 2^(2x+1)-10^x-1)/9,{x,20}],OddQ[Sqrt[8#+1]]&] (* _Harvey P. Dale_, Sep 16 2019 *)
%o (PARI) Vec(3*x*(7 - 40*x) / ((1 - x)*(1 - 10*x)*(1 - 100*x)) + O(x^20)) \\ _Colin Barker_, Sep 13 2018
%Y Cf. A000217, A002280, A002283, A199682.
%K nonn,base
%O 1,1
%A _Ctibor O. Zizka_, Sep 12 2018