Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Nov 16 2024 20:19:03
%S 1,3,30,406,6336,107415,1922310,35739990,683593902,13364444808,
%T 265869803598,5364752267064,109533577804350,2258715717810522,
%U 46974966620274810,984153696477302700,20751365954898103338,440033530633057730880,9377869165352931696930
%N G.f. satisfies: A(x) = ( x + A(A(x)) )^3 where g.f. A(x) = Sum_{n>=1} a(n)*x^(8*n-5).
%C Conjecture: (2*n-1) divides a(n); see A212426.
%C More generally, we have the conjecture:
%C If A(x) = ( x + A(A(x)) )^b
%C where A(x) = Sum_{n>=1} a(n) * x^((b^2-1)*(n-1)+b)
%C then ((b-1)*(n-1)+1) divides a(n).
%H Alois P. Heinz, <a href="/A212425/b212425.txt">Table of n, a(n) for n = 1..100</a>
%F G.f.: A(x) = d/dx G(x^8)/(4*x^4) where G(x) = Sum_{n>=1} A212426(n)*x^n is the g.f. of A212426.
%F a(n) = (2*n-1)*A212426(n).
%F a(n) = T(8*n-5,1), T(n,k) = if n<3*k then 0 else if n/3=k then 1 else sum(j=0..3*k-1, C(3*k,j)*sum(i=3*k-j+1..n-j-1, T(i,3*k-j)*T(n-j,i))). [_Vladimir Kruchinin_, May 17 2012]
%e G.f.: A(x) = x^3 + 3*x^11 + 30*x^19 + 406*x^27 + 6336*x^35 + 107415*x^43 +...
%e such that A(x) = (x + A(A(x)))^3, where
%e A(A(x)) = x^9 + 9*x^17 + 117*x^25 + 1788*x^33 + 29925*x^41 + 530910*x^49 + 9809193*x^57 + 186734493*x^65 + 3637247445*x^73 +...
%e Note that A(A(x))^(1/3) = A(x) + A(A(A(x))), where
%e A(A(x))^(1/3) = x^3 + 3*x^11 + 30*x^19 + 407*x^27 + 6363*x^35 + 108009*x^43 + 1934721*x^51 + 35995815*x^59 + 688861845*x^67 +...
%e A(A(A(x))) = x^27 + 27*x^35 + 594*x^43 + 12411*x^51 + 255825*x^59 + 5267943*x^67 + 108864873*x^75 + 2261456685*x^83 +...
%p A:= proc(n) option remember;
%p `if`(n=1, unapply(x, x), unapply (convert (series
%p ((x+(A(n-1)@@2)(x))^3, x, n+10), polynom), x))
%p end:
%p a:= n-> coeff (A(8*n-5)(x), x, 8*n-5):
%p seq (a(n), n=1..30); # _Alois P. Heinz_, May 17 2012
%t T[n_, k_] := T[n, k] = If[n<3*k, 0, If[n/3 == k, 1, Sum[Binomial[3*k, j]*Sum[T[i, 3*k-j]*T[n-j, i], {i, 3*k-j+1, n-j-1}], {j, 0, 3*k-1}]]]; Table[T[8*n-5, 1], {n, 1, 19 }] (* _Jean-François Alcover_, Feb 14 2014, after _Vladimir Kruchinin_ *)
%o (PARI) {a(n)=local(A=x^3+3*x^11); for(i=1, n, A=(x+subst(A, x, A+O(x^(8*n))))^3); polcoeff(A, 8*n-5)}
%o for(n=1, 30, print1(a(n), ", "))
%o (Maxima) T(n,k):= if n<3*k then 0 else if n/3=k then 1 else sum(binomial(3*k,j)*sum(T(i,3*k-j)*T(n-j,i), i,3*k-j+1,n-j-1), j,0,3*k-1);
%o makelist(T(n,1),n,1,20); /* _Vladimir Kruchinin_, May 17 2012 */
%Y Cf. A212426, A212392.
%K nonn
%O 1,2
%A _Paul D. Hanna_, May 16 2012