The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A215561 Number A(n,k) of permutations of k indistinguishable copies of 1..n with every partial sum <= the same partial sum averaged over all permutations; square array A(n,k), n>=0, k>=0, read by antidiagonals. 25
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 5, 30, 7, 1, 1, 1, 14, 420, 403, 35, 1, 1, 1, 42, 6930, 40350, 18720, 139, 1, 1, 1, 132, 126126, 5223915, 19369350, 746192, 1001, 1, 1, 1, 429, 2450448, 783353872, 27032968200, 9212531290, 71892912, 5701, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,13 COMMENTS "Late-growing permutations" were first defined by R. H. Hardin in A147681 and 18 related sequences.  David Scambler observed that the set of orthogonal sequences includes A000108 and A007004, and he asked for the other orthogonal sequences, see link below. "Early-growing permutations" with every partial sum >= the same partial sum averaged over all permutations define the same sequences. Conjecture: Row r > 1 is asymptotic to c(r) * r^(r*n) / (Pi^((r-1)/2) * n^((r+1)/2)), where c(r) are a constants. - Vaclav Kotesovec, Sep 07 2016 LINKS Alois P. Heinz, Antidiagonals n = 0..14, flattened David Scambler et al., A147681 Late-growing permutations and follow-up messages on the SeqFan list, Aug 10 2012 EXAMPLE A(2,2) = 2: (1,1,2,2), (1,2,1,2). A(2,3) = 5: (1,1,1,2,2,2), (1,1,2,1,2,2), (1,1,2,2,1,2), (1,2,1,1,2,2), (1,2,1,2,1,2). A(3,1) = 3: (1,2,3), (1,3,2), (2,1,3). a(4,1) = 7: (1,2,3,4), (1,2,4,3), (1,3,2,4), (1,4,2,3), (2,1,3,4), (2,1,4,3), (2,3,1,4). Square array A(n,k) begins:   1,   1,     1,        1,           1,              1, ...   1,   1,     1,        1,           1,              1, ...   1,   1,     2,        5,          14,             42, ...   1,   3,    30,      420,        6930,         126126, ...   1,   7,   403,    40350,     5223915,      783353872, ...   1,  35, 18720, 19369350, 27032968200, 44776592395920, ... MAPLE b:= proc(l) option remember; local m, n, g;       m, n:= nops(l), add(i, i=l);       g:= add(i*l[i], i=1..m)-(m+1)/2*(n-1);      `if`(n<2, 1, add(`if`(l[i]>0 and i<=g,         b(subsop(i=l[i]-1, l)), 0), i=1..m))     end: A:= (n, k)-> b([k\$n]): seq(seq(A(n, d-n), n=0..d), d=0..10); MATHEMATICA b[l_] := b[l] = Module[{m, n, g}, {m, n} = {Length[l], Total[l]}; g = Sum[i*l[[i]], {i, 1, m}] - (m+1)/2*(n-1); If[n < 2, 1, Sum[If[l[[i]] > 0 && i <= g, b[ReplacePart[l, i -> l[[i]] - 1]], 0], {i, 1, m}]]]; a[n_, k_] := b[Array[k&, n]]; Table [Table [a[n, d-n], {n, 0, d}], {d, 0, 9}] // Flatten (* Jean-François Alcover, Dec 06 2013, translated from Maple *) CROSSREFS Columns k=0-19 give: A000012, A147681, A147682, A147684, A147686, A147687, A147692, A147694, A147695, A147697, A147698, A147700, A147705, A147707, A147712, A147713, A147714, A147715, A147717, A147769. Rows n=0+1, 2-7 give: A000012, A000108, A007004, A215562, A215570, A215571, A215593. Sequence in context: A106178 A305807 A205104 * A108714 A135508 A030413 Adjacent sequences:  A215558 A215559 A215560 * A215562 A215563 A215564 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Aug 16 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 13 11:30 EDT 2022. Contains 356091 sequences. (Running on oeis4.)