login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215563
C(p,k)/p for primes p and k=1,...,p-1.
1
1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 5, 3, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1, 1, 8, 40, 140, 364, 728, 1144, 1430, 1430, 1144, 728, 364, 140, 40, 8, 1, 1, 9, 51, 204, 612, 1428, 2652, 3978, 4862, 4862, 3978, 2652, 1428, 612, 204, 51, 9, 1
OFFSET
1,5
COMMENTS
Motivated by the fact that any prime p divides the binomial coefficients C(p,k)=p!/k!(p-k)! for k=1,...,p-1.
EXAMPLE
Formatted as an irregular triangular table, the sequence reads:
1,/* p=2 */
1,1,/* p=3 */
1,2,2,1,/* p=5 */
1,3,5,5,3,1,/* p=7 */
1,5,15,30,42,42,30,15,5,1,/* p=11 */
1,6,22,55,99,132,132,99,55,22,6,1,/* p=13 */
1,8,40,140,364,728,1144,1430,1430,1144,728,364,140,40,8,1,/* p=17 */
etc.
PROG
(PARI) forprime(p=1, 19, for(k=1, p-1, print1(binomial(p, k)/p", ")); print("/* p="p" */"))
CROSSREFS
Sequence in context: A336706 A344567 A076037 * A076263 A272689 A274887
KEYWORD
nonn
AUTHOR
M. F. Hasler, Aug 16 2012
STATUS
approved