The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A147681 Late-growing permutations: number of permutations of 1..n with every partial sum <= the same partial sum averaged over all permutations. 21
 1, 1, 1, 3, 7, 35, 139, 1001, 5701, 53109, 402985, 4605271, 43665667, 589809987, 6735960079, 104899483845, 1402547616085, 24698838710457, 378845419610773, 7444522779300351, 128830635114146047, 2792467448952670671, 53854927962971227495, 1276369340371154144337, 27141331409803338993193, 698008560075731437652425, 16228797258964121571885457, 450111715263775132783135875 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Same as A145874. LINKS David Scambler et al., A147681 Late-growing permutations and follow-up messages on the SeqFan list, Aug 10 2012 MAPLE a:= proc(n) option remember; local b, m; m:= n*(n+1)/2;       b:= proc(s) option remember; local h, g; h:= nops(s);             g:= (n-h+1)*(1+n)/2 -m +add(i, i=s); `if`(h<2, 1,             add(`if`(s[i]<=g, b(subsop(i=NULL, s)), 0), i=1..h))           end; forget(b);       b([\$1..n])     end: seq(a(n), n=0..15);  # Alois P. Heinz, Aug 10 2012 MATHEMATICA a[n_] := a[n] = Module[{b, m}, m = n*(n+1)/2; b[s_List] := b[s] = Module[{h, g}, h = Length[s]; g = (n-h+1)*(1+n)/2 - m + Total[s]; If[h<2, 1, Sum[If[s[[i]] <= g, b[ReplacePart[s, i -> Sequence[]]], 0], {i, 1, h}]]];  b[Range[n]]]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Mar 13 2015, after Alois P. Heinz *) CROSSREFS This the first of 19 related sequence, the others being A147682, A147684, A147686, A147687, A147692, A147694, A147695, A147697, A147698, A147700, A147705, A147707, A147712, A147713, A147714, A147715, A147717, A147769. Column k=1 of A215561. Sequence in context: A336012 A212417 A145874 * A055487 A121130 A006099 Adjacent sequences:  A147678 A147679 A147680 * A147682 A147683 A147684 KEYWORD nonn,hard AUTHOR R. H. Hardin, May 01 2009 EXTENSIONS a(22) from Alois P. Heinz, Aug 10 2012 a(23) from Alois P. Heinz, Nov 01 2014 a(24)-a(25) from Vaclav Kotesovec, Jan 31 2015 a(26)-a(27) from Vaclav Kotesovec, Sep 07 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 21:47 EDT 2020. Contains 337414 sequences. (Running on oeis4.)