|
|
A336012
|
|
a(n) is the number of chains from {} to a top element in the poset of even sized subsets of {1,2,...,n} ordered by inclusion.
|
|
0
|
|
|
1, 1, 1, 3, 7, 35, 121, 847, 3907, 35163, 202741, 2230151, 15430207, 200592691, 1619195761, 24287936415, 224061282907, 3809041809419, 39531606447181, 751100522496439, 8661323866026007, 181887801186546147, 2307185279184885001, 53065261421252355023, 734307168916191403507, 18357679222904785087675
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
Note that when n is even there is one top element, namely {1,2,...,n}. When n is odd there are C(n,n-1) = n top elements in the poset.
|
|
LINKS
|
Table of n, a(n) for n=0..25.
Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 179.
|
|
FORMULA
|
E.g.f.: 1/(2-cosh(x))*(1+x).
|
|
MATHEMATICA
|
nn = 25; Range[0, nn]! CoefficientList[Series[1/(2 - Cosh[z])*(1 + z), {z, 0, nn}], z]
|
|
CROSSREFS
|
Cf. A260464.
Sequence in context: A299300 A047907 A328420 * A212417 A145874 A147681
Adjacent sequences: A336009 A336010 A336011 * A336013 A336014 A336015
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Geoffrey Critzer, Jul 04 2020
|
|
STATUS
|
approved
|
|
|
|