login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336010
a(0) = ... = a(4) = 1; a(n) = Sum_{k=0..n-5} binomial(n-5,k) * a(k) * a(n-k-5).
2
1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 66, 148, 374, 1052, 3156, 9724, 31096, 104124, 366696, 1355624, 5220120, 20763160, 84944720, 357759200, 1557192440, 7029575320, 32929457880, 159764303320, 800509163360, 4132518624560, 21953331512080, 119966645509440
OFFSET
0,7
COMMENTS
Shifts 5 places left when e.g.f. is squared.
FORMULA
E.g.f. A(x) satisfies: A(x) = 1 + x + x^2/2 + x^3/6 + x^4/24 + Integral( Integral( Integral( Integral( Integral A(x)^2 dx) dx) dx) dx) dx.
MATHEMATICA
a[0] = a[1] = a[2] = a[3] = a[4] = 1; a[n_] := a[n] = Sum[Binomial[n - 5, k] a[k] a[n - k - 5], {k, 0, n - 5}]; Table[a[n], {n, 0, 32}]
nmax = 32; A[_] = 0; Do[A[x_] = 1 + x + x^2/2 + x^3/6 + x^4/24 + Integrate[Integrate[Integrate[Integrate[Integrate[A[x]^2, x], x], x], x], x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] Range[0, nmax]!
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 04 2020
STATUS
approved