login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100139
a(n) = Sum_{k=0..floor(n/6)} C(n-3k,3k) * 3^k * 2^(n-6k).
3
1, 2, 4, 8, 16, 32, 67, 152, 376, 992, 2704, 7424, 20233, 54398, 144112, 376736, 974368, 2500544, 6385435, 16264220, 41396788, 105423776, 268818064, 686499008, 1755723793, 4495691834, 11521647916, 29543647160, 75774096832, 194353495424
OFFSET
0,2
COMMENTS
Binomial transform of 1,1,1,1,1,1,4,4,13,13,31,... with g.f. (1-x)^2(1+x)^3/(1-3x^2+3x^4-4x^6)=(1+x)(1-x^2)^2/((1-x^2)^3-3x^6).
FORMULA
G.f.: (1-2x)^2/((1-2x)^3 - 3x^6).
a(n) = 6*a(n-1) -12*a(n-2) + 8*a(n-3) + 3*a(n-6).
MATHEMATICA
LinearRecurrence[{6, -12, 8, 0, 0, 3}, {1, 2, 4, 8, 16, 32}, 30] (* Harvey P. Dale, Sep 30 2015 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 06 2004
STATUS
approved