The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A299300 Values of k such that A065358(k-1) = 0. 1
 1, 3, 7, 35, 39, 43, 51, 55, 79, 87, 91, 107, 111, 115, 835, 843, 1391, 1407, 1411, 1471, 1579, 1587, 1651, 1663, 1843, 1851, 3383, 3491, 3507, 3515, 3519, 3547, 3659, 3691, 3719, 3747, 3779, 3819, 3823, 3843, 3851, 3855, 3871, 3899, 3939, 3947, 3987, 3991 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Obtained by adding 1 to the terms of A064940. Fraile et al. (2017) describe essentially the same sequence as A065358 except with offset 1 instead of 0. So the present sequence gives the values of k so that their version of the Jacob's Ladder sequence has the value 0. For the first 7730 terms, see the b-file in A064940. LINKS Alberto Fraile, Roberto Martínez, and Daniel Fernández, Jacob's Ladder: Prime numbers in 2d, arXiv preprint arXiv:1801.01540 [math.HO], 2017. MATHEMATICA A065358:= Table[Sum[(-1)^(PrimePi[k]), {k, 1, n}], {n, 0, 500}]; Select[Range[50], A065358[[#]] == 0 &] (* G. C. Greubel, Feb 20 2018 *) PROG (Python) from sympy import nextprime A299300_list, p, d, n, r = [], 2, -1, 0, False while n <= 10**6:     pn, k = p-n, d if r else -d     if 0 < k <= pn:         A299300_list.append(n+k)     d += -pn if r else pn     r, n, p = not r, p, nextprime(p) # Chai Wah Wu, Feb 21 2018 CROSSREFS Cf. A065358, A064940. Sequence in context: A318444 A334314 A179115 * A047907 A328420 A336012 Adjacent sequences:  A299297 A299298 A299299 * A299301 A299302 A299303 KEYWORD nonn AUTHOR N. J. A. Sloane, Feb 20 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 23 07:25 EDT 2021. Contains 345395 sequences. (Running on oeis4.)