login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318444
Numerators of the sequence whose Dirichlet convolution with itself yields A057660(n) = Sum_{k=1..n} n/gcd(n,k).
2
1, 3, 7, 35, 21, 21, 43, 239, 195, 63, 111, 245, 157, 129, 147, 6851, 273, 585, 343, 735, 301, 333, 507, 1673, 1643, 471, 3011, 1505, 813, 441, 931, 50141, 777, 819, 903, 6825, 1333, 1029, 1099, 5019, 1641, 903, 1807, 3885, 4095, 1521, 2163, 47957, 6555, 4929, 1911, 5495, 2757, 9033, 2331, 10277, 2401, 2439, 3423
OFFSET
1,2
COMMENTS
Because A057660 contains only odd values, A046644 gives the sequence of denominators. Because both of those sequences are multiplicative, this is also.
LINKS
FORMULA
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A057660(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
MATHEMATICA
a57660[n_] := DivisorSigma[2, n^2]/DivisorSigma[1, n^2];
f[1] = 1; f[n_] := f[n] = 1/2 (a57660[n] - Sum[f[d]*f[n/d], {d, Divisors[ n][[2 ;; -2]]}]);
Table[f[n] // Numerator, {n, 1, 60}] (* Jean-François Alcover, Sep 13 2018 *)
PROG
(PARI)
up_to = 16384;
A057660(n) = sumdivmult(n, d, eulerphi(d)*d); \\ From A057660
DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
v318444aux = DirSqrt(vector(up_to, n, A057660(n)));
A318444(n) = numerator(v318444aux[n]);
CROSSREFS
Cf. A057660, A046644 (denominators).
Cf. also A318443.
Sequence in context: A192880 A355156 A365140 * A334314 A179115 A299300
KEYWORD
nonn,frac,mult
AUTHOR
STATUS
approved