login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A318443 Numerators of the sequence whose Dirichlet convolution with itself yields A018804, Pillai's arithmetical function: Sum_{k=1..n} gcd(k, n). 3
1, 3, 5, 23, 9, 15, 13, 91, 59, 27, 21, 115, 25, 39, 45, 1451, 33, 177, 37, 207, 65, 63, 45, 455, 179, 75, 353, 299, 57, 135, 61, 5797, 105, 99, 117, 1357, 73, 111, 125, 819, 81, 195, 85, 483, 531, 135, 93, 7255, 363, 537, 165, 575, 105, 1059, 189, 1183, 185, 171, 117, 1035, 121, 183, 767, 46355, 225, 315, 133, 759, 225, 351, 141, 5369 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Because A018804 gets only odd values on primes, A046644 gives the sequence of denominators. Because both of those sequences are multiplicative, this is also.

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..16384

FORMULA

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A018804(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.

MATHEMATICA

a18804[n_] := Sum[n EulerPhi[d]/d, {d, Divisors[n]}];

f[1] = 1; f[n_] := f[n] = 1/2 (a18804[n] - Sum[f[d] f[n/d], {d, Divisors[ n][[2 ;; -2]]}]);

a[n_] := f[n] // Numerator;

Array[a, 72] (* Jean-François Alcover, Sep 13 2018 *)

PROG

(PARI)

up_to = 16384;

A018804(n) = sumdiv(n, d, n*eulerphi(d)/d); \\ From A018804

DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.

v318443aux = DirSqrt(vector(up_to, n, A018804(n)));

A318443(n) = numerator(v318443aux[n]);

CROSSREFS

Cf. A018804, A046644 (denominators).

Cf. also A318444.

Sequence in context: A270637 A064187 A112686 * A272426 A270180 A270793

Adjacent sequences:  A318440 A318441 A318442 * A318444 A318445 A318446

KEYWORD

nonn,frac,mult

AUTHOR

Antti Karttunen and Andrew Howroyd, Aug 29 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 06:46 EDT 2021. Contains 343909 sequences. (Running on oeis4.)