login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318440
a(n) = A046645(n) - A007814(n); the 2-adic valuation of A299150.
4
0, 0, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 2, 3, 1, 3, 1, 2, 2, 1, 1, 2, 3, 1, 4, 2, 1, 2, 1, 3, 2, 1, 2, 4, 1, 1, 2, 2, 1, 2, 1, 2, 4, 1, 1, 4, 3, 3, 2, 2, 1, 4, 2, 2, 2, 1, 1, 3, 1, 1, 4, 4, 2, 2, 1, 2, 2, 2, 1, 4, 1, 1, 4, 2, 2, 2, 1, 4, 7, 1, 1, 3, 2, 1, 2, 2, 1, 4, 2, 2, 2, 1, 2, 4, 1, 3, 4, 4, 1, 2, 1, 2, 3
OFFSET
1,9
COMMENTS
After two initial terms, all terms are positive.
LINKS
FORMULA
a(n) = A046645(n) - A007814(n).
a(n) = A007814(A299150(n)).
Additive with a(p^e) = (1 + (p mod 2))*e - A000120(e). - Amiram Eldar, Apr 28 2023
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = -1 + Sum_{p prime} f(1/p) = 0.410258867603361890498..., where f(x) = -x + Sum_{k>=0} (2^(k+1)-1)*x^(2^k)/(1+x^(2^k)). - Amiram Eldar, Sep 30 2023
MATHEMATICA
f[p_, e_] := (1 + Mod[p, 2])*e - DigitCount[e, 2, 1]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 28 2023 *)
PROG
(PARI)
A007814(n) = valuation(n, 2);
A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
A046645(n) = vecsum(apply(e -> A005187(e), factor(n)[, 2]));
A318440(n) = A046645(n) - A007814(n);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen, Sep 02 2018
STATUS
approved