login
A189965
Continued fraction of (3+x+sqrt(38+6x))/4, where x=sqrt(13).
2
3, 1, 1, 2, 1, 1, 4, 2, 4, 3, 1, 5, 1, 1, 3, 1, 1, 1, 2, 2, 2, 3, 2, 1, 1, 1, 2, 39, 5, 2, 1, 1, 1, 2, 49, 1, 4, 4, 1, 13, 1, 1, 2, 1, 32, 6, 2, 2, 1, 1, 35, 15, 1, 1, 1, 6, 1, 6, 1, 7, 2, 1, 2, 1, 15, 1, 2, 4, 1, 2, 3, 1, 5, 1, 1, 6, 4, 1, 1, 16, 6, 10, 3, 1, 5, 6, 2, 8, 1, 1, 1, 3, 25, 2, 10, 1, 1, 1, 3, 2, 25, 1, 2, 1, 4, 63, 1, 2, 2, 1, 287, 35, 1, 1, 6, 3, 4, 3, 10, 1
OFFSET
0,1
COMMENTS
See A189964 and A188635.
LINKS
MAPLE
Digits:=100: convert(evalf((3+sqrt(13)+sqrt(38+6*sqrt(13)))/4), confrac); # Wesley Ivan Hurt, Dec 12 2013
MATHEMATICA
(See A189964.)
ContinuedFraction[(3 + Sqrt[13] + Sqrt[38 + 6 Sqrt[13]])/4, 100] (* Wesley Ivan Hurt, Dec 12 2013 *)
PROG
(PARI) contfrac((3+sqrt(13)+sqrt(38+sqrt(468)))/4)
(Magma) ContinuedFraction( (3 + Sqrt(13) + Sqrt(38 + 6*Sqrt(13)))/4 ); // G. C. Greubel, Jan 12 2018
CROSSREFS
Cf. A189964 (decimal expansion), A188635.
Sequence in context: A257567 A318440 A307790 * A258820 A030347 A010275
KEYWORD
nonn,cofr
AUTHOR
Clark Kimberling, May 04 2011
EXTENSIONS
Offset changed by Andrew Howroyd, Aug 09 2024
STATUS
approved