login
A065358
The Jacob's Ladder sequence: a(n) = Sum_{k=1..n} (-1)^pi(k), where pi = A000720.
12
0, 1, 0, 1, 2, 1, 0, 1, 2, 3, 4, 3, 2, 3, 4, 5, 6, 5, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 3, 4, 3, 2, 1, 0, -1, -2, -1, 0, 1, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, -1, -2, -1, 0, 1, 2, 3, 4, 3, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 5, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, -1, -2, -1, 0, 1, 2, 3, 4, 5, 6, 5, 4
OFFSET
0,5
COMMENTS
Partial sums of A065357.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..10000 (first 1000 terms from Harry J. Smith).
Alberto Fraile, Roberto Martínez, and Daniel Fernández, Jacob's Ladder: Prime numbers in 2d, arXiv preprint arXiv:1801.01540 [math.HO], 2017. Also Prime Numbers in 2D, Math. Comput. Appl. 2020, 25, 5; https://www.mdpi.com/2297-8747/25/1/5 [They describe essentially this sequence except with offset 1 instead of 0 - N. J. A. Sloane, Feb 20 2018]
Hans Havermann, Graph of first 30 million terms. [As can seen from A064940, one has to go out beyond 44 million terms to see any further runs of positive terms.]
MAPLE
with(numtheory): f:=n->add((-1)^pi(k), k=1..n); [seq(f(n), n=0..60)]; # N. J. A. Sloane, Feb 20 2018
MATHEMATICA
Table[Sum[(-1)^(PrimePi[k]), {k, 1, n}], {n, 0, 100}] (* G. C. Greubel, Feb 20 2018 *)
a[0] = 0; a[n_] := a[n] = a[n - 1] + (-1)^PrimePi[n]; Array[a, 105, 0] (* Robert G. Wilson v, Feb 20 2018 *)
PROG
(PARI) { a=0; for (n=1, 1000, a+=(-1)^primepi(n); write("b065358.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 30 2009
[0] cat [(&+[(-1)^(#PrimesUpTo(k)):k in [1..n]]): n in [1..100]]; // G. C. Greubel, Feb 20 2018
CROSSREFS
Cf. A000720, A065357, A064940 (the zero terms).
Sequence in context: A376813 A360659 A297158 * A062329 A022958 A023444
KEYWORD
easy,sign,nice
AUTHOR
Jason Earls, Oct 31 2001
EXTENSIONS
Edited by Frank Ellermann, Feb 02 2002
Edited by N. J. A. Sloane, Feb 20 2018 (added initial term a(0)=0, added name suggested by the Fraile et al. paper)
STATUS
approved