login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376813
G.f.: Sum_{k>=0} x^(k*(k+1)) * Product_{j=1..k} (1 + x^j)^2.
4
1, 0, 1, 2, 1, 0, 1, 2, 3, 4, 3, 2, 2, 2, 3, 6, 7, 8, 10, 8, 8, 8, 6, 8, 10, 12, 16, 20, 22, 24, 27, 26, 25, 26, 25, 26, 29, 32, 37, 44, 52, 58, 66, 72, 76, 82, 82, 84, 87, 88, 91, 96, 103, 112, 126, 138, 154, 174, 190, 208, 225, 238, 253, 268, 275, 284, 296, 304
OFFSET
0,4
LINKS
FORMULA
G.f.: Sum_{k>=0} Product_{j=1..k} (x^j + x^(2*j))^2.
a(n) ~ phi^(1/2) * exp(Pi*sqrt(2*n/15)) / (4 * 5^(1/4) * sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio.
MATHEMATICA
nmax = 100; CoefficientList[Series[Sum[x^(n*(n+1))*Product[1+x^k, {k, 1, n}]^2, {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
nmax = 100; p = 1; s = 1; Do[p = Expand[p*(1 + x^k)*(1 + x^k)*x^(2*k)]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += p; , {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 05 2024
STATUS
approved