login
A376811
Expansion of 1/sqrt(1 - 4*x/(1 - x^3)^2).
1
1, 2, 6, 20, 74, 276, 1044, 3998, 15450, 60128, 235332, 925332, 3652508, 14464490, 57442074, 228670140, 912239782, 3646027752, 14596600800, 58523194734, 234954663396, 944418233612, 3800327339532, 15307785490560, 61716607166724, 249033637247898, 1005661821858414
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-5*k-1,k) * binomial(2*n-6*k,n-3*k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1-x^3)^2))
(PARI) a(n) = sum(k=0, n\3, binomial(2*n-5*k-1, k)*binomial(2*n-6*k, n-3*k));
CROSSREFS
Cf. A376791.
Sequence in context: A150151 A374599 A361753 * A150152 A107284 A211966
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 04 2024
STATUS
approved