login
A374599
Expansion of 1/sqrt(1 - 4*x - 8*x^4).
4
1, 2, 6, 20, 74, 276, 1044, 3992, 15414, 59948, 234484, 921432, 3634916, 14386248, 57097704, 227166384, 905714150, 3617851980, 14475452484, 58004111160, 232737175404, 934969613528, 3760157234584, 15137340947280, 60994657996476, 245980435701752
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/4)} 2^k * binomial(n-3*k,k) * binomial(2*(n-3*k),n-3*k).
n*a(n) = 2*(2*n-1)*a(n-1) + 4*(2*n-4)*a(n-4).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x-8*x^4))
(PARI) a(n) = sum(k=0, n\4, 2^k*binomial(n-3*k, k)*binomial(2*(n-3*k), n-3*k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 13 2024
STATUS
approved