login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360219
a(n) = Sum_{k=0..floor(n/4)} (-1)^k * binomial(n-3*k,k) * binomial(2*(n-3*k),n-3*k).
5
1, 2, 6, 20, 68, 240, 864, 3152, 11616, 43136, 161152, 604992, 2280416, 8624832, 32714688, 124399488, 474066560, 1810053120, 6922776576, 26517173760, 101710338048, 390603984896, 1501732753408, 5779500226560, 22263437981184, 85835254221824, 331193445626880
OFFSET
0,2
COMMENTS
Diagonal of rational function 1/(1 - x - y + x^4*y^3). - Seiichi Manyama, Mar 23 2023
LINKS
FORMULA
G.f.: 1/sqrt(1 - 4*x*(1 - x^3)).
n*a(n) = 2*(2*n-1)*a(n-1) - 2*(2*n-4)*a(n-4).
MAPLE
A360219 := proc(n)
add((-1)^k*binomial(n-3*k, k)*binomial(2*(n-3*k), n-3*k), k=0..n/3) ;
end proc:
seq(A360219(n), n=0..70) ; # R. J. Mathar, Mar 12 2023
PROG
(PARI) a(n) = sum(k=0, n\4, (-1)^k*binomial(n-3*k, k)*binomial(2*(n-3*k), n-3*k));
(PARI) my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1-x^3)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 31 2023
STATUS
approved