login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360222
a(n) is the number of permutable pieces in a standard n X n X n Rubik's cube.
1
0, 8, 20, 56, 92, 152, 212, 296, 380, 488, 596, 728, 860, 1016, 1172, 1352, 1532, 1736, 1940, 2168, 2396, 2648, 2900, 3176, 3452, 3752, 4052, 4376, 4700, 5048, 5396, 5768, 6140, 6536, 6932, 7352, 7772, 8216, 8660, 9128, 9596, 10088, 10580, 11096, 11612, 12152
OFFSET
1,2
FORMULA
a(n) = 8 + 12*(n-2) + 6*((n-2)^2 - (n mod 2)) for n > 1, a(1) = 0.
G.f.: 4*x^2*(x^3-4*x^2-x-2)/((x+1)*(x-1)^3).
a(n) = A005897(n-1) - A010677(n) for n>=2.
E.g.f.: 2*(2*(x - 2) + (3*x^2 - 3*x + 4)*cosh(x) + (3*x^2 - 3*x + 1)*sinh(x)). - Stefano Spezia, Feb 02 2023
EXAMPLE
The 2 X 2 X 2 Rubik's cube consists of 8 corner pieces, so a(2) = 8; the 3 X 3 X 3 cube has 8 corner pieces, 12 edge pieces, and 6 non-permutable center pieces, so a(3) = 8 + 12 = 20.
MATHEMATICA
A360222[n_] := If[n == 1, 0, 6*((n-2)*n - Mod[n, 2]) + 8]; Array[A360222, 50] (* or *)
LinearRecurrence[{2, 0, -2, 1}, {0, 8, 20, 56, 92}, 50] (* Paolo Xausa, Oct 04 2024 *)
PROG
(Python)
N = 20
seq = [0]
for n in range(2, N+1):
seq.append( 8 + 12*(n-2) + 6*((n-2)**2 - (n%2)) )
CROSSREFS
Sequence in context: A232401 A036835 A295933 * A212758 A179756 A238507
KEYWORD
nonn,easy
AUTHOR
STATUS
approved