login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A295933 Number of (not necessarily maximum) cliques in the n-Sierpinski sieve graph. 1
8, 20, 55, 160, 475, 1420, 4255, 12760, 38275, 114820, 344455, 1033360, 3100075, 9300220, 27900655, 83701960, 251105875, 753317620, 2259952855, 6779858560, 20339575675, 61018727020, 183056181055, 549168543160, 1647505629475, 4942516888420, 14827550665255 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Eric Weisstein's World of Mathematics, Clique

Eric Weisstein's World of Mathematics, Sierpinski Sieve Graph

Index entries for linear recurrences with constant coefficients, signature (4, -3).

FORMULA

a(n) = 5*(3 + 7*3^(n - 1))/6 for n > 1.

a(n) = 4*a(n-1) - 3*a(n-2) for n > 1.

G.f.: x*(8 - 12*x - x^2)/(1 - 4*x + 3*x^2).

E.g.f.: (-80 - 6*x + 45*exp(x) + 35*exp(3*x))/18. - G. C. Greubel, May 21 2019

MATHEMATICA

Table[If[n == 1, 8, 5*(3 + 7*3^(n-1))/6], {n, 30}]

Join[{8}, LinearRecurrence[{4, -3}, {20, 55}, 30]]

CoefficientList[Series[(8 -12x -x^2)/(1 -4x +3x^2), {x, 0, 30}], x]

PROG

(PARI) {a(n) = if(n==1, 8, 5*(1 +7*3^(n-2))/2)}; \\ G. C. Greubel, May 21 2019

(Magma) [n eq 1 select 8 else 5*(1 +7*3^(n-2))/2: n in [1..30]]; // G. C. Greubel, May 21 2019

(Sage) [8] + [5*(1 +7*3^(n-2))/2 for n in (2..30)] # G. C. Greubel, May 21 2019

(GAP) Concatenation([8], List([2..30], n-> 5*(1 +7*3^(n-2))/2 )) # G. C. Greubel, May 21 2019

CROSSREFS

Sequence in context: A205219 A232401 A036835 * A212758 A179756 A238507

Adjacent sequences: A295930 A295931 A295932 * A295934 A295935 A295936

KEYWORD

nonn,easy

AUTHOR

Eric W. Weisstein, Nov 29 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 00:20 EST 2022. Contains 358698 sequences. (Running on oeis4.)