login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A150150
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, 0, -1), (0, 1, 1), (1, -1, -1), (1, 0, 1)}.
0
1, 2, 6, 20, 74, 274, 1103, 4366, 18185, 75130, 320070, 1357859, 5878960, 25424127, 111353321, 488593653, 2159883504, 9580510260, 42685811494, 190927066056, 856389848702, 3855864378779, 17395678174933, 78741818484017, 357039584129968, 1623322577244383, 7392971454270849, 33740927962862991
OFFSET
0,2
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, j, -1 + k, -1 + n] + aux[-1 + i, 1 + j, 1 + k, -1 + n] + aux[i, -1 + j, -1 + k, -1 + n] + aux[1 + i, j, 1 + k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A150147 A150148 A150149 * A150151 A374599 A361753
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved