%I #16 Jul 13 2024 13:48:16
%S 1,2,6,20,74,276,1044,3992,15414,59948,234484,921432,3634916,14386248,
%T 57097704,227166384,905714150,3617851980,14475452484,58004111160,
%U 232737175404,934969613528,3760157234584,15137340947280,60994657996476,245980435701752
%N Expansion of 1/sqrt(1 - 4*x - 8*x^4).
%H Seiichi Manyama, <a href="/A374599/b374599.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = Sum_{k=0..floor(n/4)} 2^k * binomial(n-3*k,k) * binomial(2*(n-3*k),n-3*k).
%F n*a(n) = 2*(2*n-1)*a(n-1) + 4*(2*n-4)*a(n-4).
%o (PARI) my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x-8*x^4))
%o (PARI) a(n) = sum(k=0, n\4, 2^k*binomial(n-3*k, k)*binomial(2*(n-3*k), n-3*k));
%Y Cf. A360219, A360267.
%Y Cf. A084609, A374598.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Jul 13 2024