login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376808
Number of non-isomorphic colorings of a toroidal n X n grid using any number of swappable colors.
5
1, 9, 2387, 655089857, 185543613289205809, 106103186941524316132396201360, 218900758256599151027392153440612298654753249, 2689595989958732045849530682270318547733917269644639109073775285
OFFSET
1,2
COMMENTS
Two colorings are equivalent if there is a permutation of the colors that takes one to the other in addition to translational symmetries on the torus (Power Group Enumeration). The maximum number of colors is n * n.
REFERENCES
F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.
FORMULA
a(n) = Sum_{Q=1..n^2} (1/(n^2*Q!))*(Sum_{sigma in S_Q} Sum_{d|n} Sum_{f|n} phi(d) phi(f) [[forall j_l(sigma) > 0 : l|lcm(d,f) ]] P(gcd(d,f)*(n/d)*(n/f), sigma)) where P(F, sigma) = F! [z^F] Product_{l=1..Q} (exp(lz)-1)^j_l(sigma). The notation j_l(sigma) is from the Harary text and gives the number of cycles of length l in the permutation sigma. [[.]] is an Iverson bracket.
EXAMPLE
For the 2x2 we find
+-+-+ +-+-+ +-+-+ +-+-+ +-+-+
|X|X| |X|X| |X|X| |X| | |X| |
+-+-+ +-+-+ +-+-+ +-+-+ +-+-+
|X|X| |X| | | | | |X| | | |X|
+-+-+ +-+-+ +-+-+ +-+-+ +-+-+
+-+-+ +-+-+ +-+-+ +-+-+
|X|Y| |X| | |X| | |X|Y|
+-+-+ +-+-+ +-+-+ +-+-+
| | | |Y| | | |Y| |Z| |
+-+-+ +-+-+ +-+-+ +-+-+
so a(2) = 9.
CROSSREFS
Main diagonal of A295197.
Sequence in context: A013827 A058428 A323517 * A278914 A069704 A033997
KEYWORD
nonn
AUTHOR
Marko Riedel, Oct 04 2024
STATUS
approved