login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A376807
Products of distinct prime Fibonacci numbers.
0
1, 2, 3, 5, 6, 10, 13, 15, 26, 30, 39, 65, 78, 89, 130, 178, 195, 233, 267, 390, 445, 466, 534, 699, 890, 1157, 1165, 1335, 1398, 1597, 2314, 2330, 2670, 3029, 3194, 3471, 3495, 4791, 5785, 6058, 6942, 6990, 7985, 9087, 9582, 11570, 15145, 15970, 17355, 18174
OFFSET
1,2
COMMENTS
Each term is a product of a finite subsequence of A005478.
PROG
(Python)
import itertools, math, sympy
def fibprimegen(limit): # Generate Fibonacci primes <= limit
a, b = 1, 2
while b <= limit:
if sympy.isprime(b):
yield b
a, b = b, a+b
LIMIT=1000000
fibprimes=list(fibprimegen(LIMIT))
fibprimeseqs=itertools.chain.from_iterable(
itertools.combinations(fibprimes, n) for n in range(len(fibprimes)+1))
print(sorted(a for a in map(math.prod, fibprimeseqs) if a <= LIMIT))
CROSSREFS
Sequence in context: A250179 A202823 A013931 * A018429 A341125 A035953
KEYWORD
nonn,easy
AUTHOR
Jack Brennen, Oct 04 2024
STATUS
approved