login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215287
Number of permutations of 0..floor((n*3-1)/2) on even squares of an n X 3 array such that each row and column of even squares is increasing.
2
1, 3, 10, 30, 140, 420, 2310, 6930, 42042, 126126, 816816, 2450448, 16628040, 49884120, 350574510, 1051723530, 7595781050, 22787343150, 168212023980, 504636071940, 3792416540640, 11377249621920, 86787993910800, 260363981732400, 2011383287449200
OFFSET
1,2
COMMENTS
Also Schröder paths of length n having floor(n/2) peaks. - Peter Luschny, Sep 30 2018
LINKS
FORMULA
f3 = floor((n+1)/2); f4 = floor(n/2);
a(n) = A060854(2,f3)*A060854(1,f4)*binomial(2*f3+1*f4,2*f3).
a(n) = (n - f + 1)*(2*n - f)! / ((n - f + 1)!^2 * f!) where f = floor(n/2). - Peter Luschny, Sep 30 2018
EXAMPLE
Some solutions for n=5:
0 x 4 0 x 5 1 x 3 0 x 1 0 x 3 1 x 4 0 x 2
x 3 x x 1 x x 0 x x 4 x x 2 x x 0 x x 1 x
1 x 5 2 x 6 2 x 5 2 x 3 1 x 6 2 x 5 3 x 5
x 7 x x 3 x x 6 x x 6 x x 5 x x 6 x x 6 x
2 x 6 4 x 7 4 x 7 5 x 7 4 x 7 3 x 7 4 x 7
MAPLE
T := (n, k) -> (n-k+1)*(2*n-k)!/((n-k+1)!^2*k!):
a := n -> T(n, floor(n/2)): seq(a(n), n = 1..23); # Peter Luschny, Sep 30 2018
MATHEMATICA
Table[(n - Floor[n/2] + 1) (2 n - Floor[n/2])! / ((n -Floor[n/2] + 1)!^2 Floor[n/2]!), {n, 1, 30}] (* Vincenzo Librandi, Oct 01 2018 *)
PROG
(Magma) [(n-(n div 2)+1)*Factorial(2*n-(n div 2)) / (Factorial(n-(n div 2) +1)^2*Factorial((n div 2))): n in [1..30]]; // Vincenzo Librandi, Oct 01 2018
CROSSREFS
Column 3 of A215292.
Sequence in context: A004663 A136853 A361911 * A316764 A331780 A360563
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 07 2012
STATUS
approved