The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A215285 n such that sum_{k=1..n} (n - k | k) = phi(n), where (i|j) is the Kronecker symbol and phi(n) is the Euler totient function. 2
 1, 2, 3, 4, 6, 9, 16, 36, 64, 100, 144, 196, 256, 324, 400, 484, 576, 676, 784, 900, 1024, 1156, 1296, 1444, 1600, 1764, 1936, 2116, 2304, 2500, 2704, 2916, 3136, 3364, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5476, 5776, 6084, 6400, 6724, 7056, 7396, 7744 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS n is in this sequence if and only if sum_{k=1..n} (n-k|k) = sum_{k=1..n} |(n-k|k)|. LINKS MATHEMATICA Reap[ Do[ If[ Sum[ KroneckerSymbol[n - k, k], {k, 1, n}] == EulerPhi[n], Print[n]; Sow[n]], {n, 1, 8000}]][[2, 1]] (* Jean-François Alcover, Jul 29 2013 *) PROG (Sage) def A215200_row(n): return [kronecker_symbol(n-k, k) for k in (1..n)] [n for n in (1..1000) if sum(A215200_row(n)) == euler_phi(n)] CROSSREFS Cf. A000010, A215200, A215283, A215284. Sequence in context: A256774 A213682 A103481 * A275173 A295394 A081419 Adjacent sequences:  A215282 A215283 A215284 * A215286 A215287 A215288 KEYWORD nonn AUTHOR Peter Luschny, Aug 07 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 13:19 EDT 2021. Contains 347668 sequences. (Running on oeis4.)