OFFSET
0,7
COMMENTS
Inspired by A048736.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,16,0,0,0,0,-16,0,0,0,0,1).
FORMULA
G.f.: (1 +x +x^2 +x^3 +x^4 -15*x^5 -14*x^6 -13*x^7 -12*x^8 -10*x^9 +9*x^10 +6*x^11 +4*x^12 +3*x^13 +2*x^14) / ((1 -x)*(1 +x +x^2 +x^3 +x^4)*(1 -15*x^5 +x^10)). - Colin Barker, Jul 19 2016
a(n) = 16*a(n-5) - 16*a(n-10) + a(n-15). - G. C. Greubel, Jul 20 2016
MATHEMATICA
RecurrenceTable[{a[n] == (a[n - 3] + a[n - 1] a[n - 5])/a[n - 6], a[1] == 1, a[2] == 1, a[3] == 1, a[4] == 1, a[5] == 1, a[6] == 1}, a, {n, 42}] (* or *)
CoefficientList[Series[(1 + x + x^2 + x^3 + x^4 - 15 x^5 - 14 x^6 - 13 x^7 - 12 x^8 - 10 x^9 + 9 x^10 + 6 x^11 + 4 x^12 + 3 x^13 + 2 x^14)/((1 - x) (1 + x + x^2 + x^3 + x^4) (1 - 15 x^5 + x^10)), {x, 0, 41}], x] (* Michael De Vlieger, Jul 19 2016 *)
nxt[{a_, b_, c_, d_, e_, f_}]:={b, c, d, e, f, (d+f*b)/a}; NestList[nxt, {1, 1, 1, 1, 1, 1}, 50][[;; , 1]] (* Harvey P. Dale, Jan 06 2024 *)
PROG
(Ruby)
def A(k, l, n)
a = Array.new(k * 2, 1)
ary = [1]
while ary.size < n + 1
break if (a[1] * a[-1] + a[k] * l) % a[0] > 0
a = *a[1..-1], (a[1] * a[-1] + a[k] * l) / a[0]
ary << a[0]
end
ary
end
def A275173(n)
A(3, 1, n)
end
(PARI) Vec((1 +x +x^2 +x^3 +x^4 -15*x^5 -14*x^6 -13*x^7 -12*x^8 -10*x^9 +9*x^10 +6*x^11 +4*x^12 +3*x^13 +2*x^14) / ((1 -x)*(1 +x +x^2 +x^3 +x^4)*(1 -15*x^5 +x^10)) + O(x^50)) \\ Colin Barker, Jul 19 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jul 19 2016
STATUS
approved