login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275171
Partition the j digits of n into blocks of k, with 1 <= k <= j-1, starting at left and multiply. Sum of these numbers equals n.
1
396, 1064, 1518, 1545, 4318, 4345, 4563, 12154, 21154, 145250, 517150, 532315, 43321250, 66710504, 175401008, 407902400, 492701500, 1148032202, 10144502500, 35308402400, 44916701500, 90751434020, 101445025000, 353084024000, 449167015000, 907514340200
OFFSET
1,1
COMMENTS
The number of partitions of k digits are [j-(j mod k)]/k. If j is not a multiple of k the last partition has j mod k digits. E.g.: the partitions of 3 digits of 5573670 are 557 and 367 plus a partition of one digit, 0 (here j=7 and k=3). - Paolo P. Lava, Aug 04 2016
EXAMPLE
3*9*6 + 39*6 = 396;
1*0*6*4 + 10*64 + 106*4 = 1064;
1*2*1*5*4 + 12*15*4 + 121*54 + 1215*4 = 12154.
MAPLE
P:=proc(q) local a, b, c, d, j, k, n;
for n from 1 to q do c:=0; for k from 1 to ilog10(n) do a:=1; b:=n; d:=ilog10(n)+1;
for j from 1 to trunc(d/k) do a:=a*(trunc(n/10^(d-j*k)) mod 10^k); od;
if d-trunc(d/k)*k>0 then a:=a*(n mod 10^(d-trunc(d/k)*k)); fi;
c:=c+a; od; if n=c then print(n); fi; od; end: P(10^6);
CROSSREFS
Cf. A275170.
Sequence in context: A230450 A247989 A126078 * A028299 A205628 A203934
KEYWORD
nonn,base,more
AUTHOR
Paolo P. Lava, Jul 19 2016
EXTENSIONS
a(18)-a(26) from Giovanni Resta, Jul 21 2016
STATUS
approved