login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375621
a(n) = (a(n-3)*a(n-5) + a(n-1)*a(n-7))/a(n-8) with a(0) = ... = a(7) = 1.
2
1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 6, 9, 17, 35, 106, 210, 385, 1028, 2767, 9761, 32795, 129759, 351733, 1076957, 6165427, 27815973, 148629048, 721531991, 3768314574, 17276660082, 109959356649, 1149560654775, 7208229224331, 53412249630318, 392919259603556
OFFSET
0,9
COMMENTS
Sequence defined by recursion derived from Sato discrete tau function.
LINKS
Mohamed Bensaid, Sato tau functions and construction of Somos sequence, arXiv:2409.05911 [math.NT], 2024.
A. J. van der Poorten, Curves of Genus 2, Continued Fractions and Somos Sequences, arXiv:math/0412372 [math.NT], 2004.
Eric Weisstein's World of Mathematics, Somos Sequence.
MAPLE
a:= proc(n) option remember; `if`(n<8, 1,
(a(n-3)*a(n-5) + a(n-1)*a(n-7))/a(n-8))
end:
seq(a(n), n=0..35); # Alois P. Heinz, Aug 24 2024
PROG
(Python)
def calculate_terms(n):
a = [1] * n
for l in range(n - 8):
a[l + 8] = (a[l + 3] * a[l + 5] + a[l + 7] * a[l + 1]) // a[l]
return a
CROSSREFS
Sequence in context: A213682 A103481 A215285 * A275173 A295394 A081419
KEYWORD
nonn
AUTHOR
Mohamed Bensaid, Aug 21 2024
STATUS
approved