login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215200
Triangle read by rows, Kronecker symbol (n-k|k) for n >= 1, 1 <= k <= n.
9
1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, -1, -1, 1, 0, 1, 0, 0, 0, 1, 0, 1, -1, 1, 1, -1, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 0, 1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 1, 0
OFFSET
1,1
COMMENTS
Signed version of A054521.
REFERENCES
Henri Cohen: A Course in Computational Algebraic Number Theory, p. 29.
LINKS
Eric Weisstein's World of Mathematics, Kronecker Symbol.
EXAMPLE
Triangle begins:
1,
1, 0,
1, 1, 0,
1, 0, 1, 0,
1, -1, -1, 1, 0,
1, 0, 0, 0, 1, 0,
1, -1, 1, 1, -1, 1, 0,
1, 0, -1, 0, -1, 0, 1, 0,
1, 1, 0, 1, 1, 0, 1, 1, 0,
1, 0, 1, 0, 0, 0, -1, 0, 1, 0,
From Jianing Song, Dec 26 2018: (Start)
This sequence can also be arranged into a square array T(n,k) = Kronecker symbol(n|k) with n >= 0, k >= 1, read by antidiagonals:
1 0 0 0 0 0 0 ... ((0|k) = A000007(k+1))
1 1 1 1 1 1 1 ... ((1|k) = A000012)
1 0 -1 0 -1 0 -1 ... ((2|k) = A091337)
1 -1 0 1 -1 0 -1 ... ((3|k) = A091338)
1 0 1 0 1 0 1 ... ((4|k) = A000035)
1 -1 -1 1 0 1 -1 ... ((5|k) = A080891)
1 0 0 0 1 0 -1 ... ((6|k) = A322796)
1 1 1 1 -1 1 0 ... ((7|k) = A089509)
... (End)
MAPLE
A215200_row := n -> seq(numtheory[jacobi](n-k, k), k=1..n);
for n from 1 to 13 do A215200_row(n) od;
MATHEMATICA
Column[Table[KroneckerSymbol[n - k, k], {n, 10}, {k, n}], Center] (* Alonso del Arte, Aug 06 2012 *)
PROG
(Sage)
def A215200_row(n): return [kronecker_symbol(n-k, k) for k in (1..n)]
for n in (1..13): print(A215200_row(n))
(PARI) T(n, k) = kronecker(n-k, k);
tabl(nn) = for(n=1, nn, for(k=1, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Apr 24 2018
(Magma) /* As triangle */ [[KroneckerSymbol(n-k, k): k in [1..n]]: n in [1..21]]; // Vincenzo Librandi, Apr 24 2018
CROSSREFS
Rows of square array include: A000012, A091337, A091338, A000035, A080891, A322796, A089509.
Sequence in context: A168030 A128431 A290452 * A054521 A349221 A338354
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Aug 05 2012
STATUS
approved