OFFSET
1,1
COMMENTS
Signed version of A054521.
REFERENCES
Henri Cohen: A Course in Computational Algebraic Number Theory, p. 29.
LINKS
G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
Eric Weisstein's World of Mathematics, Kronecker Symbol.
EXAMPLE
Triangle begins:
1,
1, 0,
1, 1, 0,
1, 0, 1, 0,
1, -1, -1, 1, 0,
1, 0, 0, 0, 1, 0,
1, -1, 1, 1, -1, 1, 0,
1, 0, -1, 0, -1, 0, 1, 0,
1, 1, 0, 1, 1, 0, 1, 1, 0,
1, 0, 1, 0, 0, 0, -1, 0, 1, 0,
From Jianing Song, Dec 26 2018: (Start)
This sequence can also be arranged into a square array T(n,k) = Kronecker symbol(n|k) with n >= 0, k >= 1, read by antidiagonals:
1 0 0 0 0 0 0 ... ((0|k) = A000007(k+1))
1 1 1 1 1 1 1 ... ((1|k) = A000012)
1 0 -1 0 -1 0 -1 ... ((2|k) = A091337)
1 -1 0 1 -1 0 -1 ... ((3|k) = A091338)
1 0 1 0 1 0 1 ... ((4|k) = A000035)
1 -1 -1 1 0 1 -1 ... ((5|k) = A080891)
1 0 0 0 1 0 -1 ... ((6|k) = A322796)
1 1 1 1 -1 1 0 ... ((7|k) = A089509)
... (End)
MAPLE
MATHEMATICA
Column[Table[KroneckerSymbol[n - k, k], {n, 10}, {k, n}], Center] (* Alonso del Arte, Aug 06 2012 *)
PROG
(Sage)
def A215200_row(n): return [kronecker_symbol(n-k, k) for k in (1..n)]
for n in (1..13): print(A215200_row(n))
(PARI) T(n, k) = kronecker(n-k, k);
tabl(nn) = for(n=1, nn, for(k=1, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Apr 24 2018
(Magma) /* As triangle */ [[KroneckerSymbol(n-k, k): k in [1..n]]: n in [1..21]]; // Vincenzo Librandi, Apr 24 2018
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Aug 05 2012
STATUS
approved