login
A338354
A (0,1)-matrix in the first quadrant read by downward antidiagonals: an example of a uniformly recurrent 2-D word in which row 0 is non-recurrent.
0
1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0
OFFSET
0
COMMENTS
Proposition 5 of Charlier et al. (2020) gives the formal definition of the matrix.
REFERENCES
Charlier, Émilie, Svetlana Puzynina, and Élise Vandomme. "Recurrence along directions in multidimensional words." Discrete Mathematics 343.10 (2020): 112006.
LINKS
Émilie Charlier, Svetlana Puzynina, and Élise Vandomme, Recurrence along directions in multidimensional words, arXiv:1907.00192 [math.CO], 2019-2020.
EXAMPLE
The array begins:
...........
1 1 1 1 1 1 1 1 1 1 1 1 ...
1 0 0 0 1 0 0 0 1 0 0 0 ...
1 1 1 1 1 1 1 1 1 1 1 1 ...
1 0 1 0 1 0 1 0 1 0 1 0 ...
1 1 1 1 1 1 1 1 1 1 1 1 ...
1 0 0 0 0 0 0 0 1 0 0 0 ...
1 1 1 1 1 1 1 1 1 1 1 1 ...
1 0 1 0 1 0 1 0 1 0 1 0 ...
1 1 1 1 1 1 1 1 1 1 1 1 ...
1 0 0 0 1 0 0 0 1 0 0 0 ...
1 1 1 1 1 1 1 1 1 1 1 1 ...
1 0 1 0 1 0 1 0 1 0 1 0 ...
1 1 1 1 1 1 1 1 1 1 1 1 ...
1 0 0 0 0 0 0 0 0 0 0 0 ...
This is to be read from bottom to top and left to right.
The initial antidiagonals (starting in bottom left corner) are:
1,
1,0,
1,1,0,
1,0,1,0,
1,1,1,1,0,
1,0,1,0,1,0,
1,1,0,1,1,1,0,
1,0,1,0,1,0,1,0,
1,1,1,1,1,1,1,1,0,
1,0,1,0,1,0,1,0,1,0,
...
CROSSREFS
Cf. A338353.
Sequence in context: A215200 A054521 A349221 * A014240 A014471 A230002
KEYWORD
nonn,tabl,more
AUTHOR
N. J. A. Sloane, Nov 02 2020
STATUS
approved