The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A230002 Array of coefficients of numerator polynomials of the rational function p(n, x - 1/x), where p(n,x) is the Fibonacci polynomial defined by p(1,x) = 1, p(2,x) = x, p(n,x) = x*p(n-1,x) + p(n-2,x). 2
 1, -1, 0, 1, 1, 0, -1, 0, 1, -1, 0, 1, 0, -1, 0, 1, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0 COMMENTS Row n has 2n-1 terms.  If r is a zero of p(n,x) then (1/2)(r +- sqrt(r^2 + 4) are zeros of q(n,x).  Appears to be a signed version of A071028. LINKS EXAMPLE First 5 rows: (1}, (-1,0,1), (1,0,-1,0,1), (-1,0,1,0,-1,0,1). First 5 polynomials:  1, -1 + x^2, 1 - x^2 + x^4, -1 + x^2 - x^4 + x^6. MATHEMATICA p[n_, x_] := p[x] = Fibonacci[n, x]; Table[p[n, x], {n, 1, 10}] f[n_, x_] := f[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x + 1/x]]] g[n_, x_] := g[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x - 1/x]]] h[n_, x_] := h[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x + 1 + 1/x]]] t1 = Flatten[Table[CoefficientList[f[n, x], x], {n, 1, 12}]];  (* A229995 *) t2 = Flatten[Table[CoefficientList[g[n, x], x], {n, 1, 12}]];  (* A230002 *) t3 = Flatten[Table[CoefficientList[h[n, x], x], {n, 1, 12}]];  (* A059317 *) CROSSREFS Cf. A229995. Sequence in context: A338354 A014240 A014471 * A071028 A286987 A011635 Adjacent sequences:  A229999 A230000 A230001 * A230003 A230004 A230005 KEYWORD tabf,sign,easy AUTHOR Clark Kimberling, Nov 07 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 02:46 EST 2021. Contains 349445 sequences. (Running on oeis4.)