login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230002
Array of coefficients of numerator polynomials of the rational function p(n, x - 1/x), where p(n,x) is the Fibonacci polynomial defined by p(1,x) = 1, p(2,x) = x, p(n,x) = x*p(n-1,x) + p(n-2,x).
2
1, -1, 0, 1, 1, 0, -1, 0, 1, -1, 0, 1, 0, -1, 0, 1, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0
OFFSET
0
COMMENTS
Row n has 2n-1 terms. If r is a zero of p(n,x) then (1/2)(r +- sqrt(r^2 + 4) are zeros of q(n,x). Appears to be a signed version of A071028.
EXAMPLE
First 5 rows: (1}, (-1,0,1), (1,0,-1,0,1), (-1,0,1,0,-1,0,1).
First 5 polynomials: 1, -1 + x^2, 1 - x^2 + x^4, -1 + x^2 - x^4 + x^6.
MATHEMATICA
p[n_, x_] := p[x] = Fibonacci[n, x]; Table[p[n, x], {n, 1, 10}]
f[n_, x_] := f[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x + 1/x]]]
g[n_, x_] := g[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x - 1/x]]]
h[n_, x_] := h[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x + 1 + 1/x]]]
t1 = Flatten[Table[CoefficientList[f[n, x], x], {n, 1, 12}]]; (* A229995 *)
t2 = Flatten[Table[CoefficientList[g[n, x], x], {n, 1, 12}]]; (* A230002 *)
t3 = Flatten[Table[CoefficientList[h[n, x], x], {n, 1, 12}]]; (* A059317 *)
CROSSREFS
Cf. A229995.
Sequence in context: A338354 A014240 A014471 * A071028 A286987 A011635
KEYWORD
tabf,sign,easy
AUTHOR
Clark Kimberling, Nov 07 2013
STATUS
approved