OFFSET
0
COMMENTS
Row n has 2n-1 terms. If r is a zero of p(n,x) then (1/2)(r +- sqrt(r^2 + 4) are zeros of q(n,x). Appears to be a signed version of A071028.
EXAMPLE
First 5 rows: (1}, (-1,0,1), (1,0,-1,0,1), (-1,0,1,0,-1,0,1).
First 5 polynomials: 1, -1 + x^2, 1 - x^2 + x^4, -1 + x^2 - x^4 + x^6.
MATHEMATICA
p[n_, x_] := p[x] = Fibonacci[n, x]; Table[p[n, x], {n, 1, 10}]
f[n_, x_] := f[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x + 1/x]]]
g[n_, x_] := g[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x - 1/x]]]
h[n_, x_] := h[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x + 1 + 1/x]]]
t1 = Flatten[Table[CoefficientList[f[n, x], x], {n, 1, 12}]]; (* A229995 *)
t2 = Flatten[Table[CoefficientList[g[n, x], x], {n, 1, 12}]]; (* A230002 *)
t3 = Flatten[Table[CoefficientList[h[n, x], x], {n, 1, 12}]]; (* A059317 *)
CROSSREFS
KEYWORD
tabf,sign,easy
AUTHOR
Clark Kimberling, Nov 07 2013
STATUS
approved