OFFSET
1,1
COMMENTS
If p = 15*10^k+10+(10^k-1)/3 is prime then 3*p is in the sequence.
a(7) is greater than 1.3*10^8.
a(11) > 10^11. - Donovan Johnson, Nov 08 2013
If p=(1/11)*(23*100^m-1) is prime then 14*p is a term of the sequence. - Farideh Firoozbakht, Nov 08 2013
a(13) > 10^13. - Giovanni Resta, Feb 08 2014
If p = (1685*10^(2k+2)+31)/33 is prime then 58*p is in the sequence. For k = 0, 3, 9, 30, 42, 51, 120, 846, ... p is prime. - Farideh Firoozbakht, Feb 10 2014
EXAMPLE
489 is in the sequence because phi(489)+sigma(489) = 324+656 = 984-4 = reversal(489)-4.
MATHEMATICA
Do[If[FromDigits@Reverse@IntegerDigits@n-4 == EulerPhi[n] + DivisorSigma[1, n], Print[n]], {n, 130000000}]
PROG
(PARI) is(n)=subst(Polrev(digits(n)), 'x, 10)-4==eulerphi(n)+sigma(n) \\ Charles R Greathouse IV, Nov 08 2013
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Farideh Firoozbakht, Nov 07 2013
EXTENSIONS
a(7)-a(10) from Donovan Johnson, Nov 08 2013
a(11)-a(12) from Giovanni Resta, Feb 06 2014
STATUS
approved