login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229999
For every positive integer m, let u(m) = (d(1),d(2),...,d(k)) be the unitary divisors of m. The sequence (a(n)) consists of integers of the form d(k)/d(1) + d(k-1)/d(2) + ... + d(k)/d(1).
3
1, 13, 68, 170, 289, 377, 1160, 2105, 2900, 4930, 9425, 10946, 19594, 20740, 33680, 51850, 45385, 52625, 69716, 84200, 83522, 88145, 107848, 143140, 269620, 208520, 226577, 273650, 353800, 458354, 521300, 540985, 568226, 884500, 760328, 832745, 876265
OFFSET
1,2
COMMENTS
The values of m for which d(k)/d(1) + d(k-1)/d(2) + ... + d(k)/d(1) is an integer are given by A229996. - Clark Kimberling, Jun 16 2018
EXAMPLE
a(2) = 13 = 10/1 + 5/2 + 2/5 + 1/10.
MATHEMATICA
z = 10000; r[n_] := r[n] = Select[Divisors[n], GCD[#, n/#] == 1 &];
k[n_] := f[n] = Length[r[n]]; t[n_] := t[n] = Table[r[n][[k[n] + 1 - i]]/r[n][[k[1] + i - 1]], {i, 1, k[n]}]; s = Table[Plus @@ t[n], {n, 1, z}]; a[n_] := a[n] = If[IntegerQ[s[[n]]], 1, 0]; u = Table[a[n], {n, 1, z}]; v = Flatten[Position[u, 1]] (* A229996 *)
s[[v]] (* A229999 *)
CROSSREFS
Sequence in context: A137720 A199896 A213355 * A258618 A093119 A362102
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 31 2013
EXTENSIONS
Definition corrected by Clark Kimberling, Jun 16 2018
STATUS
approved