Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jun 16 2018 18:35:00
%S 1,13,68,170,289,377,1160,2105,2900,4930,9425,10946,19594,20740,33680,
%T 51850,45385,52625,69716,84200,83522,88145,107848,143140,269620,
%U 208520,226577,273650,353800,458354,521300,540985,568226,884500,760328,832745,876265
%N For every positive integer m, let u(m) = (d(1),d(2),...,d(k)) be the unitary divisors of m. The sequence (a(n)) consists of integers of the form d(k)/d(1) + d(k-1)/d(2) + ... + d(k)/d(1).
%C The values of m for which d(k)/d(1) + d(k-1)/d(2) + ... + d(k)/d(1) is an integer are given by A229996. - _Clark Kimberling_, Jun 16 2018
%e a(2) = 13 = 10/1 + 5/2 + 2/5 + 1/10.
%t z = 10000; r[n_] := r[n] = Select[Divisors[n], GCD[#, n/#] == 1 &];
%t k[n_] := f[n] = Length[r[n]]; t[n_] := t[n] = Table[r[n][[k[n] + 1 - i]]/r[n][[k[1] + i - 1]], {i, 1, k[n]}]; s = Table[Plus @@ t[n], {n, 1, z}]; a[n_] := a[n] = If[IntegerQ[s[[n]]], 1, 0]; u = Table[a[n], {n, 1, z}]; v = Flatten[Position[u, 1]] (* A229996 *)
%t s[[v]] (* A229999 *)
%Y Cf. A229994, A229996.
%K nonn,easy
%O 1,2
%A _Clark Kimberling_, Oct 31 2013
%E Definition corrected by _Clark Kimberling_, Jun 16 2018