The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A215199 Smallest number k such that k and k+1 are both of the form p*q^n where p and q are distinct primes. 5
 14, 44, 135, 2511, 8991, 29888, 916352, 12393728, 155161088, 2200933376, 6856828928, 689278976, 481758175232, 3684603215871, 35419114668032, 2035980763136, 174123685117952, 9399153082499072, 19047348965998592, 203368956137832447, 24217192574746623, 2503092614937444351 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(15) <= 35419114668032. - Donovan Johnson, Aug 22 2012 If k is a term such that k = p*q^n and k+1 = r*s^n, where p,q,r,s are primes, then clearly q != s. Conjecture: q and s are either 2 or 3 for all terms. - Chai Wah Wu, Mar 10 2019 Since q^n and s^n are coprime, the Chinese Remainder Theorem can be used to find candidate terms to test, i.e., numbers k such that k+1 == 0 (mod s^n) and k+1 == 1 (mod q^n) (see Python code). - Chai Wah Wu, Mar 12 2019 From David A. Corneth, Mar 13 2019: (Start) Conjecture: Let 1 <= D < 2^n be the denominator of N/D of (3/2)^n. Without loss of generality, if the conjecture above holds that (q, s) = (2, 3) then r = D + k*2^n for some n. Example: for n = 100, we have the continued fraction of (3/2)^100 to be 406561177535215237, 2, 1, 1, 14, 9, 1, 1, 2, 2, 1, 4, 1, 2, 6, 5, 1, 195, 3, 26, 39, 6, 1, 1, 1, 2, 7, 1, 4, 2, 1, 11, 1, 25, 6, 1, 4, 3, 2, 112, 1, 2, 1, 3, 1, 3, 4, 8, 1, 1, 12, 2, 1, 3, 2, 2 from which we compute D = 519502503658624787456021964081. We find r = 1100840223501761745286594404230449 = D + 868 * 2^100 giving a(100) + 1 = r*3^100. - David A. Corneth, Mar 13 2019 LINKS Chai Wah Wu, Table of n, a(n) for n = 1..1279 (terms 25..32 from David A. Corneth) EXAMPLE a(3) = 135 because 135 = 5*3^3 and 136 = 17*2^3; a(4) = 2511 because 2511 = 31*3^4 and 2512 = 157*2^4. MAPLE psig := proc(n) local s, p ; s := [] ; for p in ifactors(n)[2] do s := [op(s), op(2, p)] ; end do: sort(s) ; end proc: A215199 := proc(n) local slim, smi, sma, ca, qi, q, p, k ; for slim from 0 do smi := slim*1000 ; sma := (slim+1)*1000 ; ca := sma ; q := 2 ; for qi from 1 do p := nextprime(floor(smi/q^n)-1) ; while p*q^n < sma do if p <> q then k := p*q^n ; if psig(k+1) = [1, n] then ca := min(ca, k) ; end if; end if; p := nextprime(p) ; end do: if q^n >= sma then break; end if; q := nextprime(q) ; end do: if ca < sma then return ca ; end if; end do: end proc: for n from 1 do print(A215199(n)) ; end do; # R. J. Mathar, Aug 07 2012 PROG (Python) from sympy import isprime, nextprime from sympy.ntheory.modular import crt def A215199(n): l = len(str(3**n))-1 l10, result = 10**l, 2*10**l while result >= 2*l10: l += 1 l102, result = l10, 20*l10 l10 *= 10 q, qn = 2, 2**n while qn <= l10: s, sn = 2, 2**n while sn <= l10: if s != q: a, b = crt([qn, sn], [0, 1]) if a <= l102: a = b*(l102//b) + a while a < l10: p, t = a//qn, (a-1)//sn if p != q and t != s and isprime(p) and isprime(t): result = min(result, a-1) a += b s = nextprime(s) sn = s**n q = nextprime(q) qn = q**n return result # Chai Wah Wu, Mar 12 2019 CROSSREFS Cf. A074172, A215173, A215197, A215198. Sequence in context: A189807 A009942 A031130 * A216258 A064348 A206215 Adjacent sequences: A215196 A215197 A215198 * A215200 A215201 A215202 KEYWORD nonn AUTHOR Michel Lagneau, Aug 05 2012 EXTENSIONS a(10)-a(14) from Donovan Johnson, Aug 22 2012 a(15)-a(17) from Chai Wah Wu, Mar 09 2019 a(18)-a(22) from Chai Wah Wu, Mar 10 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 09:23 EDT 2024. Contains 372786 sequences. (Running on oeis4.)