login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215201
Central coefficients in Product_{k=0..n-1} (1 + 2^k*x + x^2).
0
1, 1, 4, 22, 210, 3690, 123928, 8128636, 1053430654, 271360277914, 139369979870592, 142937572590524820, 292964593467450613956, 1200451226250888081523716, 9836015215866134276407221456, 161168995194103116779231535612216, 5281443249372612678523678805252800566
OFFSET
0,3
FORMULA
a(n) ~ c * 2^(n*(n-1)/2), where c = 3.97351011200975226288353040315941996... . - Vaclav Kotesovec, Feb 10 2015
EXAMPLE
The coefficients in Product_{k=0..n-1} (1+2^k*x+x^2), n>=0, form the triangle:
1;
1, 1, 1;
1, 3, 4, 3, 1;
1, 7, 17, 22, 17, 7, 1;
1, 15, 74, 165, 210, 165, 74, 15, 1;
1, 31, 315, 1364, 2924, 3690, 2924, 1364, 315, 31, 1;
1, 63, 1308, 11475, 46887, 98622, 123928, 98622, 46887, 11475, 1308, 63, 1; ...
in which the central terms of the rows form this sequence.
MATHEMATICA
Flatten[{1, Table[Coefficient[Expand[Product[1 + 2^k*x + x^2, {k, 0, n-1}]], x^n], {n, 1, 20}]}] (* Vaclav Kotesovec, Feb 10 2015 *)
PROG
(PARI) {a(n)=polcoeff(prod(k=0, n-1, 1+2^k*x+x^2+x*O(x^n)), n)}
for(n=0, 21, print1(a(n), ", "))
CROSSREFS
Sequence in context: A303330 A280828 A103437 * A063380 A113385 A356285
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 05 2012
STATUS
approved