login
A356285
a(n) = Sum_{k=0..n} binomial(3*n, k) * q(k), where q(k) is the number of partitions into distinct parts (A000009).
1
1, 4, 22, 214, 1509, 12770, 107884, 874365, 6834843, 56722759, 463069914, 3666488610, 29512199193, 233492075573, 1858649112464, 14890457067926, 117154630898329, 917101099859767, 7257072314543086, 56653800922475280, 442687465112658972, 3467083846726752495
OFFSET
0,2
FORMULA
a(n) ~ 3^(3*n + 1/4) * exp(Pi*sqrt(n/3)) / (sqrt(Pi) * n^(5/4) * 2^(2*n + 2)).
MATHEMATICA
Table[Sum[Binomial[3*n, k] * PartitionsQ[k], {k, 0, n}], {n, 0, 30}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 01 2022
STATUS
approved