The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A188675 Partial sums of the binomial coefficients binomial(3*n,n) (A005809). 6
 1, 4, 19, 103, 598, 3601, 22165, 138445, 873916, 5560741, 35605756, 229142476, 1480820176, 9603245620, 62463474700, 407330900284, 2662179813931, 17433248900656, 114359597479261, 751343566800961, 4943188072606456 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000(terms 1..100 from Vincenzo Librandi) FORMULA a(n) = Sum_{k=0..n} binomial(3*k,k). Recurrence: 2*(n+2)*(2n+3)*a(n+2)-(31*n^2+95*n+72)*a(n+1)+3*(3*n+4)(3*n+5)*a(n)=0. G.f.: 2*cos((1/3)*arcsin(3*sqrt(3*x)/2))/((1-x)*sqrt(4-27*x)). a(n) ~ sqrt(3)*27^(n+1)/(46*4^n*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 20 2012 MATHEMATICA Table[Sum[Binomial[3k, k], {k, 0, n}], {n, 0, 20}] PROG (Maxima) makelist(sum(binomial(3*k, k), k, 0, n), n, 0, 20); (PARI) for(n=0, 25, print1(sum(k=0, n, binomial(3*k, k)), ", ")) \\ G. C. Greubel, Jan 27 2017 CROSSREFS Cf. A001764, A005809, A104859, A188676, A188678 - A188687. Cf. A263134: Sum_{k=0..n} binomial(3*k+1,k). Cf. A087413: Sum_{k=0..n} binomial(3*k+2,k). Sequence in context: A307678 A151382 A234958 * A199876 A225029 A078940 Adjacent sequences:  A188672 A188673 A188674 * A188676 A188677 A188678 KEYWORD nonn,easy AUTHOR Emanuele Munarini, Apr 08 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 16:41 EDT 2020. Contains 337315 sequences. (Running on oeis4.)