|
|
A188678
|
|
Alternate partial sums of binomial(3*n,n)/(2*n+1).
|
|
18
|
|
|
1, 0, 3, 9, 46, 227, 1201, 6551, 36712, 209963, 1220752, 7193888, 42873220, 257957352, 1564809168, 9559946496, 58768808463, 363261736872, 2256369305793, 14076552984507, 88163556913188, 554148894304557, 3494365949734563
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Seiichi Manyama, Table of n, a(n) for n = 0..1000 (terms 0..100 from Vincenzo Librandi)
|
|
FORMULA
|
a(n) = Sum_{k=0..n} binomial(3*k,k)*(-1)^(n-k)/(2*k+1).
Recurrence: 2*(2*n^2+9*n+10)*a(n+2)-(23*n^2+63*n+40)*a(n+1)-3*(9*n^2+27*n+20)*a(n)=0.
G.f.: 2*sin((1/3)*arcsin(3*sqrt(3*x)/2))/((1+x)*sqrt(3*x)).
a(n) ~ 3^(3*n+3+1/2)/(31*sqrt(Pi)*n^(3/2)*2^(2*n+2)). - Vaclav Kotesovec, Aug 06 2013
G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * (1 + x)^2 * A(x)^3. - Ilya Gutkovskiy, Jul 25 2021
|
|
MATHEMATICA
|
Table[Sum[Binomial[3k, k](-1)^(n-k)/(2k+1), {k, 0, n}], {n, 0, 20}]
|
|
PROG
|
(Maxima) makelist(sum(binomial(3*k, k)*(-1)^(n-k)/(2*k+1), k, 0, n), n, 0, 20);
|
|
CROSSREFS
|
Cf. A005809, A001764, A188676, A104859, A188679, A188680, A188681, A188682, A188683, A188684, A188685, A188686, A188687.
Sequence in context: A106341 A065407 A180501 * A107090 A190625 A317079
Adjacent sequences: A188675 A188676 A188677 * A188679 A188680 A188681
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Emanuele Munarini, Apr 08 2011
|
|
STATUS
|
approved
|
|
|
|