login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188678
Alternate partial sums of binomial(3*n,n)/(2*n+1).
18
1, 0, 3, 9, 46, 227, 1201, 6551, 36712, 209963, 1220752, 7193888, 42873220, 257957352, 1564809168, 9559946496, 58768808463, 363261736872, 2256369305793, 14076552984507, 88163556913188, 554148894304557, 3494365949734563
OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1000 (terms 0..100 from Vincenzo Librandi)
FORMULA
a(n) = Sum_{k=0..n} binomial(3*k,k)*(-1)^(n-k)/(2*k+1).
Recurrence: 2*(2*n^2+9*n+10)*a(n+2)-(23*n^2+63*n+40)*a(n+1)-3*(9*n^2+27*n+20)*a(n)=0.
G.f.: 2*sin((1/3)*arcsin(3*sqrt(3*x)/2))/((1+x)*sqrt(3*x)).
a(n) ~ 3^(3*n+3+1/2)/(31*sqrt(Pi)*n^(3/2)*2^(2*n+2)). - Vaclav Kotesovec, Aug 06 2013
G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * (1 + x)^2 * A(x)^3. - Ilya Gutkovskiy, Jul 25 2021
MATHEMATICA
Table[Sum[Binomial[3k, k](-1)^(n-k)/(2k+1), {k, 0, n}], {n, 0, 20}]
PROG
(Maxima) makelist(sum(binomial(3*k, k)*(-1)^(n-k)/(2*k+1), k, 0, n), n, 0, 20);
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Apr 08 2011
STATUS
approved