OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1000 (terms 0..100 from Vincenzo Librandi)
FORMULA
a(n) = Sum_{k=0..n} binomial(3*k,k)*(-1)^(n-k)/(2*k+1).
Recurrence: 2*(2*n^2+9*n+10)*a(n+2)-(23*n^2+63*n+40)*a(n+1)-3*(9*n^2+27*n+20)*a(n)=0.
G.f.: 2*sin((1/3)*arcsin(3*sqrt(3*x)/2))/((1+x)*sqrt(3*x)).
a(n) ~ 3^(3*n+3+1/2)/(31*sqrt(Pi)*n^(3/2)*2^(2*n+2)). - Vaclav Kotesovec, Aug 06 2013
G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * (1 + x)^2 * A(x)^3. - Ilya Gutkovskiy, Jul 25 2021
MATHEMATICA
Table[Sum[Binomial[3k, k](-1)^(n-k)/(2k+1), {k, 0, n}], {n, 0, 20}]
PROG
(Maxima) makelist(sum(binomial(3*k, k)*(-1)^(n-k)/(2*k+1), k, 0, n), n, 0, 20);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Apr 08 2011
STATUS
approved