The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A188678 Alternate partial sums of binomial(3*n,n)/(2*n+1). 18
 1, 0, 3, 9, 46, 227, 1201, 6551, 36712, 209963, 1220752, 7193888, 42873220, 257957352, 1564809168, 9559946496, 58768808463, 363261736872, 2256369305793, 14076552984507, 88163556913188, 554148894304557, 3494365949734563 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..1000 (terms 0..100 from Vincenzo Librandi) FORMULA a(n) = Sum_{k=0..n} binomial(3*k,k)*(-1)^(n-k)/(2*k+1). Recurrence: 2*(2*n^2+9*n+10)*a(n+2)-(23*n^2+63*n+40)*a(n+1)-3*(9*n^2+27*n+20)*a(n)=0. G.f.: 2*sin((1/3)*arcsin(3*sqrt(3*x)/2))/((1+x)*sqrt(3*x)). a(n) ~ 3^(3*n+3+1/2)/(31*sqrt(Pi)*n^(3/2)*2^(2*n+2)). - Vaclav Kotesovec, Aug 06 2013 G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * (1 + x)^2 * A(x)^3. - Ilya Gutkovskiy, Jul 25 2021 MATHEMATICA Table[Sum[Binomial[3k, k](-1)^(n-k)/(2k+1), {k, 0, n}], {n, 0, 20}] PROG (Maxima) makelist(sum(binomial(3*k, k)*(-1)^(n-k)/(2*k+1), k, 0, n), n, 0, 20); CROSSREFS Cf. A005809, A001764, A188676, A104859, A188679, A188680, A188681, A188682, A188683, A188684, A188685, A188686, A188687. Sequence in context: A106341 A065407 A180501 * A107090 A190625 A317079 Adjacent sequences: A188675 A188676 A188677 * A188679 A188680 A188681 KEYWORD nonn,easy AUTHOR Emanuele Munarini, Apr 08 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 31 06:29 EDT 2023. Contains 361634 sequences. (Running on oeis4.)