The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A188683 Alternate partial sums of binomial(3n,n)^2/(2n+1). 10
 1, 2, 43, 965, 26260, 793559, 25715833, 875686727, 30942995146, 1125179561729, 41860674073996, 1586681151506804, 61081201435584796, 2382392690910289172, 93969463115644112428, 3742596382979058395348 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..606 FORMULA a(n) = sum(binomial(3*k,k)^2*(-1)^(n-k)/(2*k+1), k=0..n). Recurrence: 4*(n+2)^2*(4*n^2+16*n+15) * a(n+2) -(713*n^4+4246*n^3 +9421*n^2 +9224*n+3360) * a(n+1) -9*(9*n^2+27*n+20)^2 * a(n) = 0. a(n) ~ 3^(6*n+7)/(745*Pi*n^2*2^(4*n+3)). - Vaclav Kotesovec, Aug 06 2013 MATHEMATICA Table[Sum[Binomial[3k, k]^2(-1)^(n-k)/(2k+1), {k, 0, n}], {n, 0, 20}] PROG (Maxima) makelist(sum(binomial(3*k, k)^2*(-1)^(n-k)/(2*k+1), k, 0, n), n, 0, 20); CROSSREFS Cf. A005809, A001764, A188676, A104859, A188678, A188681, A188686, A188687. Cf. Alternate partial sums of binomial(3n,n)^2/(2n+1)^k: A188680 (k=0), this sequence (k=1), A188685 (k=2). Cf. Partial sums of binomial(3n,n)^2/(2n+1)^k: A188679 (k=0), A188682 (k=1), A188684 (k=2). Sequence in context: A240550 A142199 A109948 * A119775 A088466 A177490 Adjacent sequences:  A188680 A188681 A188682 * A188684 A188685 A188686 KEYWORD nonn,easy AUTHOR Emanuele Munarini, Apr 08 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 15:06 EDT 2020. Contains 337310 sequences. (Running on oeis4.)