login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188683
Alternate partial sums of binomial(3n,n)^2/(2n+1).
10
1, 2, 43, 965, 26260, 793559, 25715833, 875686727, 30942995146, 1125179561729, 41860674073996, 1586681151506804, 61081201435584796, 2382392690910289172, 93969463115644112428, 3742596382979058395348
OFFSET
0,2
LINKS
FORMULA
a(n) = sum(binomial(3*k,k)^2*(-1)^(n-k)/(2*k+1), k=0..n).
Recurrence: 4*(n+2)^2*(4*n^2+16*n+15) * a(n+2) -(713*n^4+4246*n^3 +9421*n^2 +9224*n+3360) * a(n+1) -9*(9*n^2+27*n+20)^2 * a(n) = 0.
a(n) ~ 3^(6*n+7)/(745*Pi*n^2*2^(4*n+3)). - Vaclav Kotesovec, Aug 06 2013
MATHEMATICA
Table[Sum[Binomial[3k, k]^2(-1)^(n-k)/(2k+1), {k, 0, n}], {n, 0, 20}]
PROG
(Maxima) makelist(sum(binomial(3*k, k)^2*(-1)^(n-k)/(2*k+1), k, 0, n), n, 0, 20);
CROSSREFS
Cf. Alternate partial sums of binomial(3n,n)^2/(2n+1)^k: A188680 (k=0), this sequence (k=1), A188685 (k=2).
Cf. Partial sums of binomial(3n,n)^2/(2n+1)^k: A188679 (k=0), A188682 (k=1), A188684 (k=2).
Sequence in context: A142199 A109948 A364556 * A119775 A375620 A088466
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Apr 08 2011
STATUS
approved