login
A188681
a(n) = binomial(3n,n)^2/(2n+1).
11
1, 3, 45, 1008, 27225, 819819, 26509392, 901402560, 31818681873, 1156122556875, 42985853635725, 1628541825580800, 62667882587091600, 2443473892345873968, 96351855806554401600, 3836565846094702507776, 154071018890153214025473
OFFSET
0,2
LINKS
Clemens Heuberger, Sarah J. Selkirk, and Stephan Wagner, Enumeration of Generalized Dyck Paths Based on the Height of Down-Steps Modulo k, arXiv:2204.14023 [math.CO], 2022.
FORMULA
Recurrence: 4*(n+1)^2*(2*n+1)*(2*n+3)*a(n+1)-9*(3*n+1)^2*(3*n+2)^2*a(n)=0.
a(n) ~ 3^(6*n+1)/(Pi*2^(4*n+3)*n^2). - Vaclav Kotesovec, Aug 16 2013
MATHEMATICA
Table[Binomial[3k, k]^2/(2k+1), {k, 0, 20}}.
CoefficientList[Series[HypergeometricPFQ[{1/3, 1/3, 2/3, 2/3}, {1/2, 1, 3/2}, (729 x)/16], {x, 0, 20}], x] (* Harvey P. Dale, Apr 22 2011 *)
PROG
(Maxima) makelist(binomial(3*k, k)^2/(2*k+1), k, 0, 20);
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Apr 08 2011
STATUS
approved