login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188676
Alternate partial sums of the binomial coefficients binomial(3*n,n).
11
1, 2, 13, 71, 424, 2579, 15985, 100295, 635176, 4051649, 25993366, 167543354, 1084134346, 7038291098, 45821937982, 299045487602, 1955803426045, 12815265660680, 84111082917925, 552872886403775, 3638971619401720
OFFSET
0,2
LINKS
FORMULA
a(n) = sum(k=0..n, (-1)^(n-k)*binomial(3*k,k) ).
Recurrence: 2*(n+2)*(2n+3)*a(n+2)-(23*n^2+67*n+48)*a(n+1)-3*(3*n+4)*(3n+5)*a(n)=0.
G.f.: 2*cos((1/3)*arcsin(3*sqrt(3*x)/2))/((1+x)*sqrt(4-27*x)).
a(n) ~ 3^(3*n+7/2)/(62*4^n*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 20 2012
MATHEMATICA
Table[Sum[Binomial[3k, k](-1)^(n-k), {k, 0, n}], {n, 0, 20}]
PROG
(Maxima) makelist(sum(binomial(3*k, k)*(-1)^(n-k), k, 0, n), n, 0, 20);
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Apr 08 2011
STATUS
approved