|
|
A188676
|
|
Alternate partial sums of the binomial coefficients binomial(3*n,n).
|
|
11
|
|
|
1, 2, 13, 71, 424, 2579, 15985, 100295, 635176, 4051649, 25993366, 167543354, 1084134346, 7038291098, 45821937982, 299045487602, 1955803426045, 12815265660680, 84111082917925, 552872886403775, 3638971619401720
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = sum(k=0..n, (-1)^(n-k)*binomial(3*k,k) ).
Recurrence: 2*(n+2)*(2n+3)*a(n+2)-(23*n^2+67*n+48)*a(n+1)-3*(3*n+4)*(3n+5)*a(n)=0.
G.f.: 2*cos((1/3)*arcsin(3*sqrt(3*x)/2))/((1+x)*sqrt(4-27*x)).
|
|
MATHEMATICA
|
Table[Sum[Binomial[3k, k](-1)^(n-k), {k, 0, n}], {n, 0, 20}]
|
|
PROG
|
(Maxima) makelist(sum(binomial(3*k, k)*(-1)^(n-k), k, 0, n), n, 0, 20);
|
|
CROSSREFS
|
Cf. A005809, A001764, A104859, A188678, A188679, A188680, A188681, A188682, A188683, A188684, A188685, A188686, A188687.
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|