The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A104859 Partial sums of A001764. 11
 1, 2, 5, 17, 72, 345, 1773, 9525, 52788, 299463, 1730178, 10144818, 60211926, 361042498, 2183809018, 13308564682, 81637319641, 503667864976, 3123298907641, 19456221197941, 121696331095636, 764008782313381 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA a(n) = Sum_{k=0..n} binomial(3k, k)/(2k+1). G.f.: T(z)/(1-z), where T = 1+z*T^3. G.f.: 2*sin((1/3)*arcsin(sqrt(27*z/4)))/((1-z)*sqrt(3*z)). Recurrence: 2*(2*n^2 + 9*n + 10)*a(n+2) - (31*n^2 + 99*n + 80)*a(1+n) + 3*(9*n^2 + 27*n + 20)*a(n) = 0. - Emanuele Munarini, Apr 08 2011 a(n) ~ 3^(3*n+7/2)/(23*sqrt(Pi)*2^(2*n+2)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012 G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x * (1 - x)^2 * A(x)^3. - Ilya Gutkovskiy, Jul 25 2021 MAPLE a:=n->add(binomial(3*k, k)/(2*k+1), k=0..n): seq(a(n), n=0..26); MATHEMATICA Table[Sum[Binomial[3k, k]/(2k+1), {k, 0, n}], {n, 0, 20}] (* Emanuele Munarini, Apr 08 2011 *) PROG (Maxima) makelist(sum(binomial(3*k, k)/(2*k+1), k, 0, n), n, 0, 20); /* Emanuele Munarini, Apr 08 2011 */ CROSSREFS Cf. A001764. Sequence in context: A336282 A082282 A005967 * A108289 A007779 A084161 Adjacent sequences:  A104856 A104857 A104858 * A104860 A104861 A104862 KEYWORD nonn,easy,changed AUTHOR Emeric Deutsch, Apr 24 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 2 12:47 EDT 2021. Contains 346424 sequences. (Running on oeis4.)