The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A188684 Partial sums of binomials binomial(3n,n)^2/(2n+1)^2. 9
 1, 2, 11, 155, 3180, 77709, 2116893, 62210397, 1933897566, 62782453191, 2109727864416, 72915894194016, 2579631197677680, 93078664247524864, 3415556450680435264, 127175745034380516160, 4795994499281447607841 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..608 FORMULA a(n) = sum( A001764(k)^2 , k=0..n). 4*(2*n^2+9*n+10)^2*a(n+2) - (745*n^4+4518*n^3+10285*n^2+10440*n+4000)*a(n+1) + 9*(9*n^2+27*n+20)^2*a(n) = 0. a(n) = 4F3(1/3,1/3,2/3,2/3; 1,3/2,3/2; 729/16) - Gamma^2(3n+4) *5F4(1,n+4/3,n+4/3,n+5/3,n+5/3; n+2,n+2,n+5/2,n+5/2; 729/16)/ (Gamma(n+2)*Gamma(2n+3))^2, with pFq() generalized hypergeometric functions. - Charles R Greathouse IV, Apr 14 2011 a(n) ~ 3^(6*n+7)/(713*Pi*n^3*2^(4*n+4)). - Vaclav Kotesovec, Aug 06 2013 MATHEMATICA Table[Sum[Binomial[3k, k]^2/(2k+1)^2, {k, 0, n}], {n, 0, 20}] PROG (Maxima) makelist(sum(binomial(3*k, k)^2/(2k+1)^2, k, 0, n), n, 0, 20); (Magma) [&+[Binomial(3*k, k)^2/(2*k+1)^2: k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Nov 04 2016 CROSSREFS Cf. A005809, A001764, A188681. Cf. Partial sums of binomial(3n,n)^2/(2n+1)^k: A188679 (k=0), A188682 (k=1), this sequence (k=2). Cf. Alternate partial sums of binomial(3n,n)^2/(2n+1)^k: A188680 (k=0), A188683 (k=1), A188685 (k=2). Sequence in context: A049462 A227328 A287149 * A143875 A245054 A058154 Adjacent sequences: A188681 A188682 A188683 * A188685 A188686 A188687 KEYWORD nonn,easy AUTHOR Emanuele Munarini, Apr 08 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 11 21:59 EDT 2024. Contains 375839 sequences. (Running on oeis4.)