login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188684
Partial sums of binomials binomial(3n,n)^2/(2n+1)^2.
9
1, 2, 11, 155, 3180, 77709, 2116893, 62210397, 1933897566, 62782453191, 2109727864416, 72915894194016, 2579631197677680, 93078664247524864, 3415556450680435264, 127175745034380516160, 4795994499281447607841
OFFSET
0,2
LINKS
FORMULA
a(n) = sum( A001764(k)^2 , k=0..n).
4*(2*n^2+9*n+10)^2*a(n+2) - (745*n^4+4518*n^3+10285*n^2+10440*n+4000)*a(n+1) + 9*(9*n^2+27*n+20)^2*a(n) = 0.
a(n) = 4F3(1/3,1/3,2/3,2/3; 1,3/2,3/2; 729/16) - Gamma^2(3n+4) *5F4(1,n+4/3,n+4/3,n+5/3,n+5/3; n+2,n+2,n+5/2,n+5/2; 729/16)/ (Gamma(n+2)*Gamma(2n+3))^2, with pFq() generalized hypergeometric functions. - Charles R Greathouse IV, Apr 14 2011
a(n) ~ 3^(6*n+7)/(713*Pi*n^3*2^(4*n+4)). - Vaclav Kotesovec, Aug 06 2013
MATHEMATICA
Table[Sum[Binomial[3k, k]^2/(2k+1)^2, {k, 0, n}], {n, 0, 20}]
PROG
(Maxima) makelist(sum(binomial(3*k, k)^2/(2k+1)^2, k, 0, n), n, 0, 20);
(Magma) [&+[Binomial(3*k, k)^2/(2*k+1)^2: k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Nov 04 2016
CROSSREFS
Cf. Partial sums of binomial(3n,n)^2/(2n+1)^k: A188679 (k=0), A188682 (k=1), this sequence (k=2).
Cf. Alternate partial sums of binomial(3n,n)^2/(2n+1)^k: A188680 (k=0), A188683 (k=1), A188685 (k=2).
Sequence in context: A049462 A227328 A287149 * A143875 A245054 A058154
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Apr 08 2011
STATUS
approved