login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A188680
Alternate partial sums of binomial(3n,n)^2.
12
1, 8, 217, 6839, 238186, 8779823, 335842273, 13185196127, 527732395714, 21438596184911, 881264330165314, 36575197658193086, 1530121867019096914, 64443673226319500222, 2729760145163758146178, 116203781083772019594878
OFFSET
0,2
LINKS
FORMULA
a(n) = sum(C(3k,k)^2*(-1)^(n-k), k=0..n).
Recurrence: 4*(2*n^2+7*n+6)^2 * a(n+2) -(713*n^4+4262*n^3+9509*n^2 +9384*n+3456) * a(n+1) -9*(9*n^2+27*n+20)^2 * a(n) = 0.
G.f.: (1+x)^(-1)*F(1/3,1/3,2/3,2/3;1/2,1/2,1;729*x/16), where F(a1,a2,a3,a4;b1,b2,b3;z) is a hypergeometric series.
a(n) ~ 3^(6*n+7)/(745*Pi*n*2^(4*n+2)). - Vaclav Kotesovec, Aug 06 2013
MATHEMATICA
Table[Sum[Binomial[3k, k]^2(-1)^(n-k), {k, 0, n}], {n, 0, 20}]
PROG
(Maxima) makelist(sum(binomial(3*k, k)^2*(-1)^(n-k), k, 0, n), n, 0, 20);
(PARI) a(n)=my(t=1); sum(k=1, n, t*=(27*k^2 - 27*k + 6)/(4*k^2 - 2*k); (-1)^(n-k)*t^2)+(-1)^n \\ Charles R Greathouse IV, Nov 02 2016
CROSSREFS
Cf. Alternate partial sums of binomial(k*n,n)^2: A228002 (k=2), this sequence (k=3).
Sequence in context: A115964 A245591 A247539 * A329304 A352471 A232157
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Apr 08 2011
STATUS
approved