login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188680 Alternate partial sums of binomial(3n,n)^2. 12
1, 8, 217, 6839, 238186, 8779823, 335842273, 13185196127, 527732395714, 21438596184911, 881264330165314, 36575197658193086, 1530121867019096914, 64443673226319500222, 2729760145163758146178, 116203781083772019594878 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..604

FORMULA

a(n) = sum(C(3k,k)^2*(-1)^(n-k), k=0..n).

Recurrence: 4*(2*n^2+7*n+6)^2 * a(n+2) -(713*n^4+4262*n^3+9509*n^2 +9384*n+3456) * a(n+1) -9*(9*n^2+27*n+20)^2 * a(n) = 0.

G.f.: (1+x)^(-1)*F(1/3,1/3,2/3,2/3;1/2,1/2,1;729*x/16), where F(a1,a2,a3,a4;b1,b2,b3;z) is a hypergeometric series.

a(n) ~ 3^(6*n+7)/(745*Pi*n*2^(4*n+2)). - Vaclav Kotesovec, Aug 06 2013

MATHEMATICA

Table[Sum[Binomial[3k, k]^2(-1)^(n-k), {k, 0, n}], {n, 0, 20}]

PROG

(Maxima) makelist(sum(binomial(3*k, k)^2*(-1)^(n-k), k, 0, n), n, 0, 20);

(PARI) a(n)=my(t=1); sum(k=1, n, t*=(27*k^2 - 27*k + 6)/(4*k^2 - 2*k); (-1)^(n-k)*t^2)+(-1)^n \\ Charles R Greathouse IV, Nov 02 2016

CROSSREFS

Cf. A005809, A001764, A188676, A104859, A188678, A188679, A188681, A188682, A188683, A188684, A188685, A188686, A188687.

Cf. Alternate partial sums of binomial(k*n,n)^2: A228002 (k=2), this sequence (k=3).

Sequence in context: A115964 A245591 A247539 * A329304 A232157 A305517

Adjacent sequences:  A188677 A188678 A188679 * A188681 A188682 A188683

KEYWORD

nonn,easy

AUTHOR

Emanuele Munarini, Apr 08 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 29 21:59 EDT 2020. Contains 337432 sequences. (Running on oeis4.)