login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088466
a(n)=(1/2)*4^n*(2*GAMMA(n + 1/2)^2*hypergeom([n + 1/2, n + 1/2], [1/2, 1/2, 3/2], 1/4) + Pi*n!^2*hypergeom([n + 1, n + 1], [1, 3/2, 2], 1/4))/exp(1)/Pi.
1
2, 43, 2215, 204236, 29238991, 5968183657, 1640535644378, 582894501073075, 259553822858233471, 141383455055328055916, 92397970113863259277807, 71298681895041458302600993, 64098926090734144410361983410
OFFSET
1,1
FORMULA
Special values of a sum of two hypergeometric functions of type 2F3.
From Vaclav Kotesovec, Jul 05 2018: (Start)
Recurrence: (1024*n^5 - 14592*n^4 + 81984*n^3 - 226816*n^2 + 308685*n - 165149)*a(n) = (16384*n^7 - 270336*n^6 + 1857536*n^5 - 6872576*n^4 + 14746896*n^3 - 18301956*n^2 + 12132739*n - 3306031)*a(n-1) - (98304*n^9 - 2039808*n^8 + 18425856*n^7 - 94961664*n^6 + 307188704*n^5 - 645528016*n^4 + 879083340*n^3 - 745926560*n^2 + 356620843*n - 72896935)*a(n-2) + 8*(n-3)*(n-2)*(32768*n^9 - 720896*n^8 + 6938624*n^7 - 38286336*n^6 + 133198624*n^5 - 302232248*n^4 + 445870962*n^3 - 410792318*n^2 + 213441169*n - 47366190)*a(n-3) - 64*(n-4)^2*(n-3)^3*(n-2)*(2*n - 7)^2*(1024*n^5 - 9472*n^4 + 33856*n^3 - 58176*n^2 + 47757*n - 14864)*a(n-4).
a(n) ~ 2^(2*n - 1) * exp(2*sqrt(2*n) - 2*n - 1/2) * n^(2*n - 1/2). (End)
MATHEMATICA
Table[FullSimplify[2^((2*n) - 1)*(2*Gamma[n + 1/2]^2*HypergeometricPFQ[{n + 1/2, n + 1/2}, {1/2, 1/2, 3/2}, 1/4]/Pi + n!^2*HypergeometricPFQ[{n + 1, n + 1}, {1, 3/2, 2}, 1/4])/E], {n, 1, 15}] (* Vaclav Kotesovec, Jul 05 2018 *)
CROSSREFS
Sequence in context: A188683 A119775 A375620 * A357279 A362762 A177490
KEYWORD
nonn
AUTHOR
Karol A. Penson, Oct 02 2003
EXTENSIONS
a(12) corrected by Georg Fischer, Mar 13 2020
STATUS
approved