The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A225029 Non-crossing, non-nesting, 3-colored set partitions. 2
 1, 4, 19, 103, 616, 3949, 26545, 184120, 1303135, 9341191, 67490044, 489978217, 3567727441, 26024391436, 190036459099, 1388593185079, 10150390743088, 74215146065461, 542704850311009, 3968914608295360, 29026988765886535, 212297824609934455, 1552734183515322436 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Muniru A Asiru, Table of n, a(n) for n = 0..1145 (first 100 terms from Lily Yen) Eric Marberg, Crossings and nestings in colored set partitions, arXiv preprint arXiv:1203.5738 [math.CO], 2012-2013. Lily Yen, Crossings and Nestings for Arc-Coloured Permutations, arXiv:1211.3472 [math.CO], 2012-2013; and Arc-coloured permutations, PSAC 2013, Paris, France, June 24-28, Proc. DMTCS (2013) 743-754 Lily Yen, Crossings and Nestings for Arc-Coloured Permutations and Automation, Electronic Journal of Combinatorics, 22(1) (2015), #P1.14. Index entries for linear recurrences with constant coefficients, signature(14,-59,74,-1). FORMULA G.f.: (1 - 10*x + 22*x^2 - x^3)/(1 - 14*x + 59*x^2 - 74*x^3 + x^4). a(n) = 14*a(n-1) -59*a(n-2) +74*a(n-3) -a(n-4), with a(0) = 1, a(1) = 4, a(2) = 19 and a(3) = 103. - Muniru A Asiru, Dec 18 2018 EXAMPLE a(3) = 103 is the number of non-crossing, non-nesting, 3-colored set partitions on {1,2,3,4}. MAPLE seq(coeff(series((1-10*x+22*x^2-x^3)/(1-14*x+59*x^2-74*x^3+x^4), x, n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Dec 18 2018 MATHEMATICA LinearRecurrence[{14, -59, 74, -1}, {1, 4, 19, 103}, 23] (* Jean-François Alcover, Dec 14 2018 *) CoefficientList[Series[(1 - 10 x + 22 x^2 - x^3) / (1 - 14 x + 59 x^2 - 74 x^3 + x^4), {x, 0, 25}], x] (* Vincenzo Librandi, Dec 20 2018 *) PROG (PARI) Vec((1-10*x+22*x^2-x^3)/(1-14*x+59*x^2-74*x^3+x^4)+O(x^66)) \\ Joerg Arndt, Apr 24 2013 (GAP) a:=[1, 4, 19, 103];; for n in [5..25] do a[n]:=14*a[n-1]-59*a[n-2]+74*a[n-3]-a[n-4]; od; a; # Muniru A Asiru, Dec 18 2018 (Magma) I:=[1, 4, 19, 103]; [n le 4 select I[n] else 14*Self(n-1)-59*Self(n-2)+74*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 20 2018 CROSSREFS Sequence in context: A234958 A188675 A199876 * A078940 A110531 A367808 Adjacent sequences: A225026 A225027 A225028 * A225030 A225031 A225032 KEYWORD nonn AUTHOR Lily Yen, Apr 24 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 03:17 EDT 2024. Contains 375018 sequences. (Running on oeis4.)